Spaces:
Running
Running
File size: 2,189 Bytes
ace5fb6 5767134 ace5fb6 299b772 ace5fb6 20936d9 ace5fb6 20936d9 6bc8878 20936d9 fc41df8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import modin.pandas as pd
import torch
import numpy as np
from PIL import Image
from diffusers import StableDiffusionInstructPix2PixPipeline
model_id = "timbrooks/instruct-pix2pix"
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", safety_checker=None) if torch.cuda.is_available() else StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, safety_checker=None)
pipe = pipe.to(device)
def resize(value,img):
img = Image.open(img)
img = img.resize((value,value))
return img
def infer(source_img, instructions, guide, steps, seed, Strength):
generator = torch.Generator(device).manual_seed(seed)
source_image = resize(512, source_img)
source_image.save('source.png')
image = pipe(instructions, image=source_image,
guidance_scale=guide, image_guidance_scale=Strength,
num_inference_steps=steps, generator=generator,).images[0]
return image
gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"),
gr.Textbox(label = 'Input Instructions. 77 Token (Keyword or Symbol) Maximum'),
gr.Slider(2, 15, value = 7.5, label = 'Instructions Strength:'),
gr.Slider(1, 20, value = 5, step = 1, label = "Number of Iterations: More take longer, but aren't always better"),
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
gr.Slider(label='Original Image Strength:', minimum = 1, maximum = 2, step = .25, value = 1.5)],
outputs = 'image',
title = "Instructions Picture to Picture",
description = "Simply upload an image you want to edit, MUST Be .PNG and 512x512 or 768x768, then enter a Prompt telling the AI how to change the image, then click submit. This version runs on GPU or CPU and is currently running on the free CPU tier. 10 Iterations takes ~480 seconds currently. This version has no NSFW filter.",
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch(max_threads=True, debug=True) |