Spaces:
Running
on
Zero
Running
on
Zero
from transformers import BitsAndBytesConfig, LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor | |
import torch | |
import numpy as np | |
import av | |
import spaces | |
import gradio as gr | |
import os | |
zero = torch.Tensor([0]).cuda() | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16 | |
) | |
model_name = 'llava-hf/LLaVA-NeXT-Video-7B-DPO-hf' | |
processor = LlavaNextVideoProcessor.from_pretrained(model_name) | |
model = LlavaNextVideoForConditionalGeneration.from_pretrained( | |
model_name, | |
quantization_config=quantization_config, | |
device_map='auto' | |
) | |
def read_video_pyav(container, indices): | |
''' | |
Decode the video with PyAV decoder. | |
Args: | |
container (av.container.input.InputContainer): PyAV container. | |
indices (List[int]): List of frame indices to decode. | |
Returns: | |
np.ndarray: np array of decoded frames of shape (num_frames, height, width, 3). | |
''' | |
frames = [] | |
container.seek(0) | |
start_index = indices[0] | |
end_index = indices[-1] | |
for i, frame in enumerate(container.decode(video=0)): | |
if i > end_index: | |
break | |
if i >= start_index and i in indices: | |
frames.append(frame) | |
return np.stack([x.to_ndarray(format="rgb24") for x in frames]) | |
def process_video(video_file, question_parts): | |
# Open video and sample frames | |
with av.open(video_file.name) as container: # Access file name from Gradio input | |
total_frames = container.streams.video[0].frames | |
indices = np.arange(0, total_frames, total_frames / 8).astype(int) | |
video_clip = read_video_pyav(container, indices) | |
# Combine question parts into a single question | |
question = " ".join(question_parts) | |
# Prepare conversation | |
conversation = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": f"{question}"}, | |
{"type": "video"}, | |
], | |
}, | |
] | |
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) | |
# Prepare inputs for the model | |
input = processor([prompt], videos=[video_clip], padding=True, return_tensors="pt").to(zero.device) | |
# Generate output | |
generate_kwargs = {"max_new_tokens": 3000, "do_sample": False, "top_p": 0.9} | |
output = model.generate(**input, **generate_kwargs) | |
generated_text = processor.batch_decode(output, skip_special_tokens=True)[0] | |
return generated_text.split("ASSISTANT: ", 1)[-1].strip() | |
def process_videos(video_files, question): | |
"""Processes multiple videos and answers a single question for each.""" | |
answers = [] | |
for video_file in video_files: | |
video_name = os.path.basename(video_file.name) | |
answer = process_video(video_file, question) | |
answers.append(f"**Video: {video_name}**\n{answer}\n") | |
return "\n---\n".join(answers) | |
# Define Gradio interface for multiple videos | |
def gradio_interface(videos, indoors_outdoors, standing_sitting, hands_free, interacting_screen): | |
question = "For each question, analyze the given video carefully and base your answers on the observations made." | |
if indoors_outdoors: | |
question += "Consider the broader environmental context shown in the video’s background. Are there signs of an open-air space, like greenery, structures, or people passing by? If so, it’s an outdoor setting. If the setting looks confined with furniture, walls, or home decorations, it’s an indoor environment." | |
if standing_sitting: | |
question += "Evaluate the subject’s body posture and movement within the video. Are they standing upright with both feet planted firmly on the ground? If so, they are standing." | |
if hands_free: | |
question += "Examine the subject’s right and left hands in the video to check if they are holding anything like a microphone, book, paper(White color), object, or any electronic device, try segmentations and decide if the hands are free or not." | |
if interacting_screen: | |
question += "Assess the surroundings behind the subject in the video. Do they seem to interact with any visible screens, such as laptops, TVs, or digital billboards? If yes, then they are interacting with a screen. If not, they are not interacting with a screen." | |
question_prefix = "By taking these factors into account when watching the video, please answer the questions accurately." | |
question = question + question_prefix | |
answers = process_videos(videos, question) | |
return answers | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.File(label="Upload Videos", file_count="multiple"), | |
gr.Checkbox(label="Indoors or Outdoors", value=False), | |
gr.Checkbox(label="Standing or Sitting", value=False), | |
gr.Checkbox(label="Hands Free or Not", value=False), | |
gr.Checkbox(label="Interacting with Screen", value=False), | |
], | |
outputs=gr.Textbox(label="Generated Answers"), | |
title="Video Question Answering", | |
description="Upload multiple videos and select questions to get answers." | |
) | |
if __name__ == "__main__": | |
iface.launch(debug=True) |