Spaces:
Running
Running
File size: 5,735 Bytes
b9d3df6 ed57d5d b9d3df6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import os
import json
import datetime
# Import Path for robust file handling
from pathlib import Path
from openai import OpenAI
from dotenv import load_dotenv
# --- Configuration & Initialization ---
# Load environment variables from .env file
load_dotenv()
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
# OpenRouter client setup
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=OPENROUTER_API_KEY,
)
# --- CORRECTED PATH HANDLING ---
# The root of the project is two levels up from 'app/core_logic.py'
PROJECT_ROOT = Path(__file__).resolve().parent.parent
# Use Path objects for reliable access
MASTER_PROMPT_PATH = PROJECT_ROOT / "data" / "master_prompt.json"
FEEDBACK_LOG_PATH = PROJECT_ROOT / "data" / "feedback_log.json"
# --- CORRECTED LLM Model IDs ---
# Swapping to a confirmed free model ID on OpenRouter
TASK_LLM_MODEL = "x-ai/grok-4-fast"
# Keeping the Meta-LLM for later use
META_LLM_MODEL = "x-ai/grok-4-fast"
def load_master_prompt():
"""Loads the current system message from the master configuration file."""
try:
# Using Path.read_text() is clean and safe
return json.loads(MASTER_PROMPT_PATH.read_text())
except FileNotFoundError:
# Create the file with initial data if it doesn't exist
initial_data = {
"system_message": "Error: Master prompt file not found.",
"model_name": TASK_LLM_MODEL,
"version": "0.0.0",
"last_updated": datetime.datetime.now().isoformat()
}
with open(MASTER_PROMPT_PATH, 'w') as f:
json.dump(initial_data, f, indent=4)
return initial_data
except Exception as e:
print(f"Error loading master prompt: {e}")
return {"system_message": f"CRITICAL ERROR: {e}"}
def rewrite_and_generate(user_input: str) -> tuple[str, str]:
"""
1. Loads the system prompt.
2. Sends the combined prompt to the Task-LLM via OpenRouter.
3. Returns the rewritten prompt (for user visibility) and the final response.
"""
if not user_input:
return "Please enter a question.", "---"
config = load_master_prompt()
system_message = config.get("system_message", "")
# The Meta-Prompt for the LLM to structure its own output
rewrite_instruction = (
"TASK: First, rewrite the following VAGUE_INPUT into a highly specific and professional instruction (the 'OPTIMIZED PROMPT'). "
"The optimized prompt MUST include a clear Persona, the desired Output Format, and clear Constraints. "
"Second, provide the final answer based on the OPTIMIZED PROMPT. "
"Format your output strictly as: \n\n<OPTIMIZED_PROMPT>\n\n<FINAL_RESPONSE>"
)
full_prompt = f"VAGUE_INPUT: {user_input}"
messages = [
{"role": "system", "content": system_message + " " + rewrite_instruction},
{"role": "user", "content": full_prompt}
]
try:
response = client.chat.completions.create(
model=TASK_LLM_MODEL,
messages=messages,
temperature=0.7,
max_tokens=2048,
)
raw_output = response.choices[0].message.content.strip()
if "\n\n" in raw_output:
# We use .split("\n\n", 1) to ensure we only split on the first occurrence
optimized_prompt, final_response = raw_output.split("\n\n", 1)
else:
optimized_prompt = "--- (Parsing Error: Could not separate prompt and response. The LLM output might not follow the required format.)"
final_response = raw_output
return optimized_prompt.strip(), final_response.strip()
except Exception as e:
return (
f"ERROR: Failed to connect to OpenRouter API. Check key/internet. Details: {e}",
"---"
)
def log_feedback(
original_prompt: str,
optimized_prompt: str,
final_response: str,
rating: int
):
"""Logs the interaction data and user feedback to the JSON log file."""
new_entry = {
"timestamp": datetime.datetime.now().isoformat(),
"original_prompt": original_prompt,
"optimized_prompt": optimized_prompt,
"final_response": final_response,
"rating": rating
}
try:
# 1. Load existing data
if FEEDBACK_LOG_PATH.exists():
with open(FEEDBACK_LOG_PATH, 'r') as f:
# Handle case where file is empty (e.g., just '[]')
content = f.read().strip()
data = json.loads(content) if content else []
else:
data = []
# 2. Append new entry and write back
data.append(new_entry)
with open(FEEDBACK_LOG_PATH, 'w') as f:
json.dump(data, f, indent=4)
return "Feedback Logged successfully! Thank you."
except Exception as e:
return f"ERROR: Could not log feedback to JSON file. Details: {e}"
# If you run this file directly, it runs a quick test:
if __name__ == "__main__":
print("--- Testing Core Logic ---")
# Check loading
config = load_master_prompt()
print(f"Current System Message: {config.get('system_message', 'N/A')}")
# Test generation
opt_prompt, response = rewrite_and_generate("Tell me about the biggest planet in our solar system.")
print("\n[Optimized Prompt]:\n", opt_prompt)
print("\n[Final Response]:\n", response)
# Test logging
log_status = log_feedback("Vague Test", opt_prompt, response, 1)
print("\n[Log Status]:", log_status) |