File size: 18,127 Bytes
26532db
c2c3e4f
 
 
 
 
 
 
 
 
 
361637f
c2c3e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361637f
 
c2c3e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361637f
 
6da8cd8
361637f
c2c3e4f
361637f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c3e4f
361637f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c3e4f
 
361637f
 
c2c3e4f
361637f
 
 
c2c3e4f
 
 
 
 
 
361637f
 
 
 
c2c3e4f
 
 
 
 
 
 
 
 
 
a78a40d
c2c3e4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import random
from datetime import datetime
from PyPDF2 import PdfReader
import json
from dotenv import load_dotenv

load_dotenv()

class TweetDatasetProcessor:
    def __init__(self, fine_tuned_model_name, pdf_path=None):
        self.tweets = []
        self.personality_profile = {}
        self.used_tweets = set()  # Track used tweets to avoid repetition
        self.pdf_path = pdf_path

        # Load fine-tuned model and tokenizer
        self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name)
        self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name)

    @staticmethod
    def _process_line(line):
        """Process a single line.""" 
        line = line.strip()
        if not line or line.startswith('http'):  # Skip empty lines and URLs
            return None
        return {
            'content': line,
            'timestamp': datetime.now(),
            'mentions': [word for word in line.split() if word.startswith('@')],
            'hashtags': [word for word in line.split() if word.startswith('#')]
        }

    def extract_text_from_pdf(self):
        """Extract text content from PDF file.""" 
        if not self.pdf_path:
            return ""
        reader = PdfReader(self.pdf_path)
        text = ""
        for page in reader.pages:
            text += page.extract_text()
        return text

    def process_pdf_content(self, text):
        """Process PDF content and clean extracted tweets.""" 
        if not text.strip():
            raise ValueError("The provided PDF appears to be empty.")
        
        lines = text.split('\n')
        clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines]
        self.tweets = [tweet for tweet in clean_tweets if tweet]

        if not self.tweets:
            raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")

        return self.tweets

    def analyze_personality(self, max_tweets=50):
        """Comprehensive personality analysis using a limited subset of tweets.""" 
        if not self.tweets:
            raise ValueError("No tweets available for personality analysis.")

        all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
        analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
        Core beliefs, emotional tendencies, cognitive patterns, etc.
        Tweets for analysis:
        {json.dumps(all_tweets, indent=2)}
        """

        input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt')
        output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7)
        personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True)

        self.personality_profile = personality_analysis
        return self.personality_profile

    def generate_tweet(self, context="", sample_size=3):
        """Generate a new tweet by sampling random tweets and avoiding repetition.""" 
        if not self.tweets:
            return "Error: No tweets available for generation."

        # Randomly sample unique tweets
        available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
        if len(available_tweets) < sample_size:
            self.used_tweets.clear()  # Reset used tweets if all have been used
            available_tweets = self.tweets

        sampled_tweets = random.sample(available_tweets, sample_size)
        sampled_contents = [tweet['content'] for tweet in sampled_tweets]

        # Update the used tweets tracker
        self.used_tweets.update(sampled_contents)

        # Truncate personality profile to avoid token overflow
        personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile

        # Construct the prompt
        prompt = f"""Based on this personality profile:
        {personality_profile_excerpt}
        Current context or topic (if any):
        {context}
        Tweets for context:
        {', '.join(sampled_contents)}
        **Only generate the tweet. Do not include analysis, explanation, or any other content.**
        """

        input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
        output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0)
        generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip()
        
        return generated_tweet

# Gradio Interface Function
def gradio_interface(pdf_file, context="AI-powered tweet generation"):
    # Initialize the processor with uploaded PDF path
    fine_tuned_model_name = 'Manasa1/GPT2_Finetuned_tweets'  # Replace with the path to your fine-tuned model
    processor = TweetDatasetProcessor(fine_tuned_model_name, pdf_path=pdf_file.name)

    # Extract text from PDF and process it
    text = processor.extract_text_from_pdf()
    tweets = processor.process_pdf_content(text)

    # Analyze personality based on tweets
    personality_analysis = processor.analyze_personality(max_tweets=50)

    # Generate tweet based on the personality analysis and context
    generated_tweet = processor.generate_tweet(context=context, sample_size=3)

    return personality_analysis, generated_tweet

# Gradio app setup
iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.File(label="Upload PDF with Tweets"),
        gr.Textbox(label="Context for Tweet Generation (optional)", placeholder="e.g., AI-powered tweet generation")
    ],
    outputs=[
        gr.Textbox(label="Personality Analysis"),
        gr.Textbox(label="Generated Tweet")
    ],
    live=True,
    title="AI Personality and Tweet Generation",
    description="Automatically analyze personality and generate tweets based on a provided PDF of tweets."
)

# Launch the app
if __name__ == "__main__":
    iface.launch()
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import random
from datetime import datetime
from PyPDF2 import PdfReader
import json
from dotenv import load_dotenv

load_dotenv()

class TweetDatasetProcessor:
    def __init__(self, fine_tuned_model_name, pdf_path=None):
        self.tweets = []
        self.personality_profile = {}
        self.used_tweets = set()  # Track used tweets to avoid repetition
        self.pdf_path = pdf_path

        # Load fine-tuned model and tokenizer
        self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name)
        self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name)

    @staticmethod
    def _process_line(line):
        """Process a single line.""" 
        line = line.strip()
        if not line or line.startswith('http'):  # Skip empty lines and URLs
            return None
        return {
            'content': line,
            'timestamp': datetime.now(),
            'mentions': [word for word in line.split() if word.startswith('@')],
            'hashtags': [word for word in line.split() if word.startswith('#')]
        }

    def extract_text_from_pdf(self):
        """Extract text content from PDF file.""" 
        if not self.pdf_path:
            return ""
        reader = PdfReader(self.pdf_path)
        text = ""
        for page in reader.pages:
            text += page.extract_text()
        return text

    def process_pdf_content(self, text):
        """Process PDF content and clean extracted tweets.""" 
        if not text.strip():
            raise ValueError("The provided PDF appears to be empty.")
        
        lines = text.split('\n')
        clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines]
        self.tweets = [tweet for tweet in clean_tweets if tweet]

        if not self.tweets:
            raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")

        return self.tweets

    def analyze_personality(self, max_tweets=50):
        """Comprehensive personality analysis using a limited subset of tweets.""" 
        if not self.tweets:
            raise ValueError("No tweets available for personality analysis.")

        all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
        analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
        Core beliefs, emotional tendencies, cognitive patterns, etc.
        Tweets for analysis:
        {json.dumps(all_tweets, indent=2)}
        """

        input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt')
        output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7)
        personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True)

        self.personality_profile = personality_analysis
        return self.personality_profile

    def generate_tweet(self, context="", sample_size=3):
        """Generate a new tweet by sampling random tweets and avoiding repetition.""" 
        if not self.tweets:
            return "Error: No tweets available for generation."

        # Randomly sample unique tweets
        available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
        if len(available_tweets) < sample_size:
            self.used_tweets.clear()  # Reset used tweets if all have been used
            available_tweets = self.tweets

        sampled_tweets = random.sample(available_tweets, sample_size)
        sampled_contents = [tweet['content'] for tweet in sampled_tweets]

        # Update the used tweets tracker
        self.used_tweets.update(sampled_contents)

        # Truncate personality profile to avoid token overflow
        personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile

        # Construct the prompt
        prompt = f"""Based on this personality profile:
        {personality_profile_excerpt}
        Current context or topic (if any):
        {context}
        Tweets for context:
        {', '.join(sampled_contents)}
        **Only generate the tweet. Do not include analysis, explanation, or any other content.**
        """

        input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
        output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0)
        generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip()
        
        return generated_tweet

# Gradio Interface Function
def gradio_interface(pdf_file, context="AI-powered tweet generation"):
    # Initialize the processor with uploaded PDF path
    fine_tuned_model_name = 'Manasa1/GPT2_Finetuned_tweets'  # Replace with the path to your fine-tuned model
    processor = TweetDatasetProcessor(fine_tuned_model_name, pdf_path=pdf_file.name)

    # Extract text from PDF and process it
    text = processor.extract_text_from_pdf()
    tweets = processor.process_pdf_content(text)

    # Analyze personality based on tweets
    personality_analysis = processor.analyze_personality(max_tweets=50)

    # Generate tweet based on the personality analysis and context
    generated_tweet = processor.generate_tweet(context=context, sample_size=3)

    return personality_analysis, generated_tweet

# Gradio app setup
iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.File(label="Upload PDF with Tweets"),
        gr.Textbox(label="Context for Tweet Generation (optional)", placeholder="e.g., AI-powered tweet generation")
    ],
    outputs=[
        gr.Textbox(label="Personality Analysis"),
        gr.Textbox(label="Generated Tweet")
    ],
    live=True,
    title="AI Personality and Tweet Generation",
    description="Automatically analyze personality and generate tweets based on a provided PDF of tweets."
)

# Launch the app
if __name__ == "__main__":
    iface.launch()
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import random
from datetime import datetime
from PyPDF2 import PdfReader
import json
from dotenv import load_dotenv

load_dotenv()

class TweetDatasetProcessor:
    def __init__(self, fine_tuned_model_name, pdf_path=None):
        self.tweets = []
        self.personality_profile = {}
        self.used_tweets = set()  # Track used tweets to avoid repetition
        self.pdf_path = pdf_path

        # Load fine-tuned model and tokenizer
        self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name)
        self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name)

    @staticmethod
    def _process_line(line):
        """Process a single line.""" 
        line = line.strip()
        if not line or line.startswith('http'):  # Skip empty lines and URLs
            return None
        return {
            'content': line,
            'timestamp': datetime.now(),
            'mentions': [word for word in line.split() if word.startswith('@')],
            'hashtags': [word for word in line.split() if word.startswith('#')]
        }

    def extract_text_from_pdf(self):
        """Extract text content from PDF file.""" 
        if not self.pdf_path:
            return ""
        reader = PdfReader(self.pdf_path)
        text = ""
        for page in reader.pages:
            text += page.extract_text()
        return text

    def process_pdf_content(self, text):
        """Process PDF content and clean extracted tweets.""" 
        if not text.strip():
            raise ValueError("The provided PDF appears to be empty.")
        
        lines = text.split('\n')
        clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines]
        self.tweets = [tweet for tweet in clean_tweets if tweet]

        if not self.tweets:
            raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")

        return self.tweets

    def analyze_personality(self, max_tweets=50):
        """Comprehensive personality analysis using a limited subset of tweets.""" 
        if not self.tweets:
            raise ValueError("No tweets available for personality analysis.")

        all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
        analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
        Core beliefs, emotional tendencies, cognitive patterns, etc.
        Tweets for analysis:
        {json.dumps(all_tweets, indent=2)}
        """

        input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt')
        output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7)
        personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True)

        self.personality_profile = personality_analysis
        return self.personality_profile

    def generate_tweet(self, context="", sample_size=3):
        """Generate a new tweet by sampling random tweets and avoiding repetition.""" 
        if not self.tweets:
            return "Error: No tweets available for generation."

        # Randomly sample unique tweets
        available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
        if len(available_tweets) < sample_size:
            self.used_tweets.clear()  # Reset used tweets if all have been used
            available_tweets = self.tweets

        sampled_tweets = random.sample(available_tweets, sample_size)
        sampled_contents = [tweet['content'] for tweet in sampled_tweets]

        # Update the used tweets tracker
        self.used_tweets.update(sampled_contents)

        # Truncate personality profile to avoid token overflow
        personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile

        # Construct the prompt
        prompt = f"""Based on this personality profile:
        {personality_profile_excerpt}
        Current context or topic (if any):
        {context}
        Tweets for context:
        {', '.join(sampled_contents)}
        **Only generate the tweet. Do not include analysis, explanation, or any other content.**
        """

        input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
        output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0)
        generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip()
        
        return generated_tweet

# Gradio Interface Function
def gradio_interface(pdf_file, context="AI-powered tweet generation"):
    # Initialize the processor with uploaded PDF path
    fine_tuned_model_name = 'Manasa1/GPT2_Finetuned_tweets'  # Replace with the path to your fine-tuned model
    pdf_path = 'Dataset (4).pdf'
    processor = TweetDatasetProcessor(fine_tuned_model_name, pdf_path=pdf_path)

    # Extract text from PDF and process it
    text = processor.extract_text_from_pdf()
    tweets = processor.process_pdf_content(text)

    # Analyze personality based on tweets
    personality_analysis = processor.analyze_personality(max_tweets=50)

    # Generate tweet based on the personality analysis and context
    generated_tweet = processor.generate_tweet(context=context, sample_size=3)

    return personality_analysis, generated_tweet

# Gradio app setup
iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.File(label="Upload PDF with Tweets"),
        gr.Textbox(label="Context for Tweet Generation (optional)", placeholder="e.g., AI-powered tweet generation")
    ],
    outputs=[
        gr.Textbox(label="Personality Analysis"),
        gr.Textbox(label="Generated Tweet")
    ],
    live=True,
    title="AI Personality and Tweet Generation",
    description="Automatically analyze personality and generate tweets based on a provided PDF of tweets."
)

# Launch the app
if __name__ == "__main__":
    iface.launch()