Spaces:
Sleeping
Sleeping
File size: 18,127 Bytes
26532db c2c3e4f 361637f c2c3e4f 361637f c2c3e4f 361637f 6da8cd8 361637f c2c3e4f 361637f c2c3e4f 361637f c2c3e4f 361637f c2c3e4f 361637f c2c3e4f 361637f c2c3e4f a78a40d c2c3e4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import random
from datetime import datetime
from PyPDF2 import PdfReader
import json
from dotenv import load_dotenv
load_dotenv()
class TweetDatasetProcessor:
def __init__(self, fine_tuned_model_name, pdf_path=None):
self.tweets = []
self.personality_profile = {}
self.used_tweets = set() # Track used tweets to avoid repetition
self.pdf_path = pdf_path
# Load fine-tuned model and tokenizer
self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name)
self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name)
@staticmethod
def _process_line(line):
"""Process a single line."""
line = line.strip()
if not line or line.startswith('http'): # Skip empty lines and URLs
return None
return {
'content': line,
'timestamp': datetime.now(),
'mentions': [word for word in line.split() if word.startswith('@')],
'hashtags': [word for word in line.split() if word.startswith('#')]
}
def extract_text_from_pdf(self):
"""Extract text content from PDF file."""
if not self.pdf_path:
return ""
reader = PdfReader(self.pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
def process_pdf_content(self, text):
"""Process PDF content and clean extracted tweets."""
if not text.strip():
raise ValueError("The provided PDF appears to be empty.")
lines = text.split('\n')
clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines]
self.tweets = [tweet for tweet in clean_tweets if tweet]
if not self.tweets:
raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")
return self.tweets
def analyze_personality(self, max_tweets=50):
"""Comprehensive personality analysis using a limited subset of tweets."""
if not self.tweets:
raise ValueError("No tweets available for personality analysis.")
all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
Core beliefs, emotional tendencies, cognitive patterns, etc.
Tweets for analysis:
{json.dumps(all_tweets, indent=2)}
"""
input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt')
output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7)
personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True)
self.personality_profile = personality_analysis
return self.personality_profile
def generate_tweet(self, context="", sample_size=3):
"""Generate a new tweet by sampling random tweets and avoiding repetition."""
if not self.tweets:
return "Error: No tweets available for generation."
# Randomly sample unique tweets
available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
if len(available_tweets) < sample_size:
self.used_tweets.clear() # Reset used tweets if all have been used
available_tweets = self.tweets
sampled_tweets = random.sample(available_tweets, sample_size)
sampled_contents = [tweet['content'] for tweet in sampled_tweets]
# Update the used tweets tracker
self.used_tweets.update(sampled_contents)
# Truncate personality profile to avoid token overflow
personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile
# Construct the prompt
prompt = f"""Based on this personality profile:
{personality_profile_excerpt}
Current context or topic (if any):
{context}
Tweets for context:
{', '.join(sampled_contents)}
**Only generate the tweet. Do not include analysis, explanation, or any other content.**
"""
input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0)
generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip()
return generated_tweet
# Gradio Interface Function
def gradio_interface(pdf_file, context="AI-powered tweet generation"):
# Initialize the processor with uploaded PDF path
fine_tuned_model_name = 'Manasa1/GPT2_Finetuned_tweets' # Replace with the path to your fine-tuned model
processor = TweetDatasetProcessor(fine_tuned_model_name, pdf_path=pdf_file.name)
# Extract text from PDF and process it
text = processor.extract_text_from_pdf()
tweets = processor.process_pdf_content(text)
# Analyze personality based on tweets
personality_analysis = processor.analyze_personality(max_tweets=50)
# Generate tweet based on the personality analysis and context
generated_tweet = processor.generate_tweet(context=context, sample_size=3)
return personality_analysis, generated_tweet
# Gradio app setup
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.File(label="Upload PDF with Tweets"),
gr.Textbox(label="Context for Tweet Generation (optional)", placeholder="e.g., AI-powered tweet generation")
],
outputs=[
gr.Textbox(label="Personality Analysis"),
gr.Textbox(label="Generated Tweet")
],
live=True,
title="AI Personality and Tweet Generation",
description="Automatically analyze personality and generate tweets based on a provided PDF of tweets."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import random
from datetime import datetime
from PyPDF2 import PdfReader
import json
from dotenv import load_dotenv
load_dotenv()
class TweetDatasetProcessor:
def __init__(self, fine_tuned_model_name, pdf_path=None):
self.tweets = []
self.personality_profile = {}
self.used_tweets = set() # Track used tweets to avoid repetition
self.pdf_path = pdf_path
# Load fine-tuned model and tokenizer
self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name)
self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name)
@staticmethod
def _process_line(line):
"""Process a single line."""
line = line.strip()
if not line or line.startswith('http'): # Skip empty lines and URLs
return None
return {
'content': line,
'timestamp': datetime.now(),
'mentions': [word for word in line.split() if word.startswith('@')],
'hashtags': [word for word in line.split() if word.startswith('#')]
}
def extract_text_from_pdf(self):
"""Extract text content from PDF file."""
if not self.pdf_path:
return ""
reader = PdfReader(self.pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
def process_pdf_content(self, text):
"""Process PDF content and clean extracted tweets."""
if not text.strip():
raise ValueError("The provided PDF appears to be empty.")
lines = text.split('\n')
clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines]
self.tweets = [tweet for tweet in clean_tweets if tweet]
if not self.tweets:
raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")
return self.tweets
def analyze_personality(self, max_tweets=50):
"""Comprehensive personality analysis using a limited subset of tweets."""
if not self.tweets:
raise ValueError("No tweets available for personality analysis.")
all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
Core beliefs, emotional tendencies, cognitive patterns, etc.
Tweets for analysis:
{json.dumps(all_tweets, indent=2)}
"""
input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt')
output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7)
personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True)
self.personality_profile = personality_analysis
return self.personality_profile
def generate_tweet(self, context="", sample_size=3):
"""Generate a new tweet by sampling random tweets and avoiding repetition."""
if not self.tweets:
return "Error: No tweets available for generation."
# Randomly sample unique tweets
available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
if len(available_tweets) < sample_size:
self.used_tweets.clear() # Reset used tweets if all have been used
available_tweets = self.tweets
sampled_tweets = random.sample(available_tweets, sample_size)
sampled_contents = [tweet['content'] for tweet in sampled_tweets]
# Update the used tweets tracker
self.used_tweets.update(sampled_contents)
# Truncate personality profile to avoid token overflow
personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile
# Construct the prompt
prompt = f"""Based on this personality profile:
{personality_profile_excerpt}
Current context or topic (if any):
{context}
Tweets for context:
{', '.join(sampled_contents)}
**Only generate the tweet. Do not include analysis, explanation, or any other content.**
"""
input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0)
generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip()
return generated_tweet
# Gradio Interface Function
def gradio_interface(pdf_file, context="AI-powered tweet generation"):
# Initialize the processor with uploaded PDF path
fine_tuned_model_name = 'Manasa1/GPT2_Finetuned_tweets' # Replace with the path to your fine-tuned model
processor = TweetDatasetProcessor(fine_tuned_model_name, pdf_path=pdf_file.name)
# Extract text from PDF and process it
text = processor.extract_text_from_pdf()
tweets = processor.process_pdf_content(text)
# Analyze personality based on tweets
personality_analysis = processor.analyze_personality(max_tweets=50)
# Generate tweet based on the personality analysis and context
generated_tweet = processor.generate_tweet(context=context, sample_size=3)
return personality_analysis, generated_tweet
# Gradio app setup
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.File(label="Upload PDF with Tweets"),
gr.Textbox(label="Context for Tweet Generation (optional)", placeholder="e.g., AI-powered tweet generation")
],
outputs=[
gr.Textbox(label="Personality Analysis"),
gr.Textbox(label="Generated Tweet")
],
live=True,
title="AI Personality and Tweet Generation",
description="Automatically analyze personality and generate tweets based on a provided PDF of tweets."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import random
from datetime import datetime
from PyPDF2 import PdfReader
import json
from dotenv import load_dotenv
load_dotenv()
class TweetDatasetProcessor:
def __init__(self, fine_tuned_model_name, pdf_path=None):
self.tweets = []
self.personality_profile = {}
self.used_tweets = set() # Track used tweets to avoid repetition
self.pdf_path = pdf_path
# Load fine-tuned model and tokenizer
self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name)
self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name)
@staticmethod
def _process_line(line):
"""Process a single line."""
line = line.strip()
if not line or line.startswith('http'): # Skip empty lines and URLs
return None
return {
'content': line,
'timestamp': datetime.now(),
'mentions': [word for word in line.split() if word.startswith('@')],
'hashtags': [word for word in line.split() if word.startswith('#')]
}
def extract_text_from_pdf(self):
"""Extract text content from PDF file."""
if not self.pdf_path:
return ""
reader = PdfReader(self.pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
def process_pdf_content(self, text):
"""Process PDF content and clean extracted tweets."""
if not text.strip():
raise ValueError("The provided PDF appears to be empty.")
lines = text.split('\n')
clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines]
self.tweets = [tweet for tweet in clean_tweets if tweet]
if not self.tweets:
raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")
return self.tweets
def analyze_personality(self, max_tweets=50):
"""Comprehensive personality analysis using a limited subset of tweets."""
if not self.tweets:
raise ValueError("No tweets available for personality analysis.")
all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
Core beliefs, emotional tendencies, cognitive patterns, etc.
Tweets for analysis:
{json.dumps(all_tweets, indent=2)}
"""
input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt')
output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7)
personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True)
self.personality_profile = personality_analysis
return self.personality_profile
def generate_tweet(self, context="", sample_size=3):
"""Generate a new tweet by sampling random tweets and avoiding repetition."""
if not self.tweets:
return "Error: No tweets available for generation."
# Randomly sample unique tweets
available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
if len(available_tweets) < sample_size:
self.used_tweets.clear() # Reset used tweets if all have been used
available_tweets = self.tweets
sampled_tweets = random.sample(available_tweets, sample_size)
sampled_contents = [tweet['content'] for tweet in sampled_tweets]
# Update the used tweets tracker
self.used_tweets.update(sampled_contents)
# Truncate personality profile to avoid token overflow
personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile
# Construct the prompt
prompt = f"""Based on this personality profile:
{personality_profile_excerpt}
Current context or topic (if any):
{context}
Tweets for context:
{', '.join(sampled_contents)}
**Only generate the tweet. Do not include analysis, explanation, or any other content.**
"""
input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0)
generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip()
return generated_tweet
# Gradio Interface Function
def gradio_interface(pdf_file, context="AI-powered tweet generation"):
# Initialize the processor with uploaded PDF path
fine_tuned_model_name = 'Manasa1/GPT2_Finetuned_tweets' # Replace with the path to your fine-tuned model
pdf_path = 'Dataset (4).pdf'
processor = TweetDatasetProcessor(fine_tuned_model_name, pdf_path=pdf_path)
# Extract text from PDF and process it
text = processor.extract_text_from_pdf()
tweets = processor.process_pdf_content(text)
# Analyze personality based on tweets
personality_analysis = processor.analyze_personality(max_tweets=50)
# Generate tweet based on the personality analysis and context
generated_tweet = processor.generate_tweet(context=context, sample_size=3)
return personality_analysis, generated_tweet
# Gradio app setup
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.File(label="Upload PDF with Tweets"),
gr.Textbox(label="Context for Tweet Generation (optional)", placeholder="e.g., AI-powered tweet generation")
],
outputs=[
gr.Textbox(label="Personality Analysis"),
gr.Textbox(label="Generated Tweet")
],
live=True,
title="AI Personality and Tweet Generation",
description="Automatically analyze personality and generate tweets based on a provided PDF of tweets."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
|