Spaces:
Sleeping
Sleeping
File size: 1,379 Bytes
4b3eeff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import pickle
import tensorflow
import numpy as np
from numpy.linalg import norm
from tensorflow.keras.preprocessing import image
from tensorflow.keras.layers import GlobalMaxPooling2D
from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input
from sklearn.neighbors import NearestNeighbors
import cv2
feature_list = np.array(pickle.load(open('embeddings.pkl','rb')))
filenames = pickle.load(open('filenames.pkl','rb'))
model = ResNet50(weights='imagenet',include_top=False,input_shape=(224,224,3))
model.trainable = False
model = tensorflow.keras.Sequential([
model,
GlobalMaxPooling2D()
])
img = image.load_img('sample/i4.jpg',target_size=(224,224))
img_array = image.img_to_array(img)
expanded_img_array = np.expand_dims(img_array, axis=0)
preprocessed_img = preprocess_input(expanded_img_array)
result = model.predict(preprocessed_img).flatten()
normalized_result = result / norm(result)
neighbors = NearestNeighbors(n_neighbors=5,algorithm='brute',metric='euclidean')
neighbors.fit(feature_list)
distances,indices = neighbors.kneighbors([normalized_result])
print(indices)
for file in indices[0][0:5]:
temp_img = cv2.imread(filenames[file])
cv2.imshow('output',cv2.resize(temp_img,(512,512)))
cv2.waitKey(0)
distances,indices = neighbors.kneighbors([normalized_result])
print(indices) |