File size: 1,379 Bytes
4b3eeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import pickle
import tensorflow
import numpy as np
from numpy.linalg import norm
from tensorflow.keras.preprocessing import image
from tensorflow.keras.layers import GlobalMaxPooling2D
from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input
from sklearn.neighbors import NearestNeighbors
import cv2

feature_list = np.array(pickle.load(open('embeddings.pkl','rb')))
filenames = pickle.load(open('filenames.pkl','rb'))

model = ResNet50(weights='imagenet',include_top=False,input_shape=(224,224,3))
model.trainable = False

model = tensorflow.keras.Sequential([
    model,
    GlobalMaxPooling2D()
])

img = image.load_img('sample/i4.jpg',target_size=(224,224))
img_array = image.img_to_array(img)
expanded_img_array = np.expand_dims(img_array, axis=0)
preprocessed_img = preprocess_input(expanded_img_array)
result = model.predict(preprocessed_img).flatten()
normalized_result = result / norm(result)

neighbors = NearestNeighbors(n_neighbors=5,algorithm='brute',metric='euclidean')
neighbors.fit(feature_list)

distances,indices = neighbors.kneighbors([normalized_result])

print(indices)

for file in indices[0][0:5]:
    temp_img = cv2.imread(filenames[file])
    cv2.imshow('output',cv2.resize(temp_img,(512,512)))
    cv2.waitKey(0)

distances,indices = neighbors.kneighbors([normalized_result])

print(indices)