File size: 23,771 Bytes
1227ff0
f746366
 
 
8697e16
1227ff0
 
 
 
 
 
 
 
 
 
f746366
1227ff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f746366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b82d15d
1227ff0
8697e16
1227ff0
 
f746366
 
1227ff0
 
8697e16
1227ff0
 
 
 
b65afd3
7db5a7a
 
 
 
8697e16
7db5a7a
 
8697e16
7db5a7a
 
8697e16
7db5a7a
 
8697e16
7db5a7a
 
8697e16
 
7db5a7a
 
8697e16
 
7db5a7a
 
8697e16
7db5a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c55ae1b
 
7db5a7a
 
c55ae1b
7db5a7a
 
c55ae1b
7db5a7a
 
c55ae1b
7db5a7a
 
 
 
c55ae1b
7db5a7a
c55ae1b
7db5a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8697e16
7db5a7a
 
 
c55ae1b
7db5a7a
 
 
 
c55ae1b
7db5a7a
b65afd3
 
7db5a7a
 
b65afd3
 
7db5a7a
 
b65afd3
7db5a7a
 
 
 
 
b65afd3
7db5a7a
 
 
b65afd3
7db5a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65afd3
7db5a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65afd3
7db5a7a
b65afd3
 
7db5a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65afd3
7db5a7a
 
 
 
 
 
 
 
 
 
 
b65afd3
7db5a7a
 
 
b65afd3
7db5a7a
 
 
 
 
 
 
8697e16
7db5a7a
 
 
b65afd3
7db5a7a
 
 
8697e16
7db5a7a
 
 
8697e16
7db5a7a
8697e16
7db5a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8697e16
7db5a7a
 
 
 
8697e16
7db5a7a
 
 
b65afd3
7db5a7a
b65afd3
 
7db5a7a
 
c55ae1b
 
7db5a7a
 
e53d7f7
7db5a7a
 
 
 
 
 
 
b65afd3
7db5a7a
 
 
 
 
 
 
1227ff0
 
 
 
f746366
1227ff0
 
 
f746366
1227ff0
 
 
 
 
f746366
1227ff0
 
 
f746366
 
7db5a7a
f746366
1227ff0
f746366
b82d15d
f746366
 
7db5a7a
f746366
 
7db5a7a
f746366
 
 
 
7db5a7a
f746366
7db5a7a
 
f746366
 
 
7db5a7a
 
b82d15d
1227ff0
 
7db5a7a
f746366
1227ff0
f746366
7db5a7a
 
b82d15d
f746366
7db5a7a
 
f746366
 
7db5a7a
 
f746366
 
 
7db5a7a
f746366
 
7db5a7a
 
 
f746366
7db5a7a
8697e16
7db5a7a
8697e16
7db5a7a
 
 
8697e16
7db5a7a
8697e16
7db5a7a
 
 
 
f746366
 
1227ff0
7db5a7a
1227ff0
 
 
 
 
f746366
 
 
 
 
 
 
 
 
 
 
 
 
 
1227ff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f746366
1227ff0
 
f746366
1227ff0
 
 
 
 
f746366
1227ff0
f746366
 
1227ff0
f746366
1227ff0
 
f746366
 
 
1227ff0
 
7db5a7a
f746366
7db5a7a
8697e16
f746366
8697e16
1227ff0
f746366
1227ff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f746366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227ff0
 
 
 
 
 
 
 
f746366
1227ff0
 
 
f746366
 
 
1227ff0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
"""
Utility functions for Phramer AI
By Pariente AI, for MIA TV Series

Enhanced with professional cinematography knowledge and intelligent token economy
"""

import re
import logging
import gc
from typing import Optional, Tuple, Dict, Any, List
from PIL import Image
import torch
import numpy as np

from config import PROCESSING_CONFIG, FLUX_RULES, PROFESSIONAL_PHOTOGRAPHY_CONFIG

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


def setup_logging(level: str = "INFO") -> None:
    """Setup logging configuration"""
    logging.basicConfig(
        level=getattr(logging, level.upper()),
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
    )


def optimize_image(image: Any) -> Optional[Image.Image]:
    """
    Optimize image for processing
    
    Args:
        image: Input image (PIL, numpy array, or file path)
        
    Returns:
        Optimized PIL Image or None if failed
    """
    if image is None:
        return None
        
    try:
        # Convert to PIL Image if necessary
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        elif isinstance(image, str):
            image = Image.open(image)
        elif not isinstance(image, Image.Image):
            logger.error(f"Unsupported image type: {type(image)}")
            return None
        
        # Convert to RGB if necessary
        if image.mode != 'RGB':
            image = image.convert('RGB')
        
        # Resize if too large
        max_size = PROCESSING_CONFIG["max_image_size"]
        if image.size[0] > max_size or image.size[1] > max_size:
            image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
            logger.info(f"Image resized to {image.size}")
        
        return image
        
    except Exception as e:
        logger.error(f"Image optimization failed: {e}")
        return None


def validate_image(image: Any) -> bool:
    """
    Validate if image is processable
    
    Args:
        image: Input image to validate
        
    Returns:
        True if valid, False otherwise
    """
    if image is None:
        return False
        
    try:
        optimized = optimize_image(image)
        return optimized is not None
    except Exception:
        return False


def clean_memory() -> None:
    """Clean up memory and GPU cache"""
    try:
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
        logger.debug("Memory cleaned")
    except Exception as e:
        logger.warning(f"Memory cleanup failed: {e}")


def detect_scene_type_from_analysis(analysis_metadata: Dict[str, Any]) -> str:
    """Detect scene type from BAGEL analysis metadata"""
    try:
        # Check if BAGEL provided scene detection
        if "scene_type" in analysis_metadata:
            return analysis_metadata["scene_type"]
        
        # Check camera setup for scene hints
        camera_setup = analysis_metadata.get("camera_setup", "").lower()
        
        if any(term in camera_setup for term in ["portrait", "85mm", "135mm"]):
            return "portrait"
        elif any(term in camera_setup for term in ["landscape", "wide", "24mm", "phase one"]):
            return "landscape"
        elif any(term in camera_setup for term in ["street", "35mm", "documentary", "leica"]):
            return "street"
        elif any(term in camera_setup for term in ["cinema", "arri", "red", "anamorphic"]):
            return "cinematic"
        elif any(term in camera_setup for term in ["architecture", "building", "tilt"]):
            return "architectural"
        
        return "default"
        
    except Exception as e:
        logger.warning(f"Scene type detection failed: {e}")
        return "default"


def apply_flux_rules(prompt: str, analysis_metadata: Optional[Dict[str, Any]] = None) -> str:
    """
    Apply enhanced prompt optimization with cinematography knowledge and intelligent token economy
    
    Args:
        prompt: Raw prompt text from BAGEL analysis
        analysis_metadata: Enhanced metadata with cinematography suggestions
        
    Returns:
        Optimized prompt with professional cinematography terms and efficient token usage
    """
    if not prompt or not isinstance(prompt, str):
        return ""
    
    try:
        # Step 1: Extract and clean the core description
        core_description = _extract_clean_description(prompt)
        if not core_description:
            return "Professional photograph with technical excellence"
        
        # Step 2: Get camera configuration
        camera_setup = _get_camera_setup(analysis_metadata, core_description)
        
        # Step 3: Get essential style keywords
        style_keywords = _get_essential_keywords(core_description, camera_setup, analysis_metadata)
        
        # Step 4: Build final optimized prompt
        final_prompt = _build_optimized_prompt(core_description, camera_setup, style_keywords)
        
        logger.info(f"Prompt optimized: {len(prompt)} β†’ {len(final_prompt)} chars")
        return final_prompt
        
    except Exception as e:
        logger.error(f"Prompt optimization failed: {e}")
        return _create_fallback_prompt(prompt)


def _extract_clean_description(prompt: str) -> str:
    """Extract and clean the core description from BAGEL output"""
    try:
        # Remove CAMERA_SETUP section
        if "CAMERA_SETUP:" in prompt:
            description = prompt.split("CAMERA_SETUP:")[0].strip()
        elif "2. CAMERA_SETUP" in prompt:
            description = prompt.split("2. CAMERA_SETUP")[0].strip()
        else:
            description = prompt
        
        # Remove section headers
        description = re.sub(r'^(DESCRIPTION:|1\.\s*DESCRIPTION:)\s*', '', description, flags=re.IGNORECASE)
        
        # Remove verbose introduction phrases
        remove_patterns = [
            r'^This image (?:features|shows|depicts|presents|captures)',
            r'^The image (?:features|shows|depicts|presents|captures)',
            r'^This (?:photograph|picture|scene) (?:features|shows|depicts)',
            r'^(?:In this image,?|Looking at this image,?)',
            r'(?:possibly|apparently|seemingly|appears to be|seems to be)',
        ]
        
        for pattern in remove_patterns:
            description = re.sub(pattern, '', description, flags=re.IGNORECASE)
        
        # Convert to concise, direct language
        description = _convert_to_direct_language(description)
        
        # Clean up formatting
        description = re.sub(r'\s+', ' ', description).strip()
        
        # Limit length for efficiency
        if len(description) > 200:
            sentences = re.split(r'[.!?]', description)
            description = sentences[0] if sentences else description[:200]
        
        return description.strip()
        
    except Exception as e:
        logger.warning(f"Description extraction failed: {e}")
        return prompt[:100] if prompt else ""


def _convert_to_direct_language(text: str) -> str:
    """Convert verbose descriptive text to direct, concise language"""
    try:
        # Direct conversions for common verbose phrases
        conversions = [
            # Subject identification
            (r'a (?:person|individual|figure|man|woman) (?:who is|that is)', r'person'),
            (r' (?:who is|that is) (?:wearing|dressed in)', r' wearing'),
            (r' (?:who appears to be|that appears to be)', r''),
            
            # Location simplification  
            (r'(?:what appears to be|what seems to be) (?:a|an)', r''),
            (r'in (?:what looks like|what appears to be) (?:a|an)', r'in'),
            (r'(?:standing|sitting|positioned) in (?:the middle of|the center of)', r'in'),
            
            # Action simplification
            (r'(?:is|are) (?:currently|presently) (?:engaged in|performing)', r''),
            (r'(?:can be seen|is visible|are visible)', r''),
            
            # Background simplification
            (r'(?:In the background|Behind (?:him|her|them)),? (?:there (?:is|are)|we can see)', r'Background:'),
            (r'The background (?:features|shows|contains)', r'Background:'),
            
            # Remove filler words
            (r'\b(?:quite|rather|somewhat|fairly|very|extremely)\b', r''),
            (r'\b(?:overall|generally|typically|usually)\b', r''),
        ]
        
        result = text
        for pattern, replacement in conversions:
            result = re.sub(pattern, replacement, result, flags=re.IGNORECASE)
        
        # Clean up extra spaces and punctuation
        result = re.sub(r'\s+', ' ', result)
        result = re.sub(r'\s*,\s*,+', ',', result)
        result = re.sub(r'^\s*,\s*', '', result)
        
        return result.strip()
        
    except Exception as e:
        logger.warning(f"Language conversion failed: {e}")
        return text


def _get_camera_setup(analysis_metadata: Optional[Dict[str, Any]], description: str) -> str:
    """Get camera setup configuration"""
    try:
        # Check if BAGEL provided camera setup
        if analysis_metadata and analysis_metadata.get("has_camera_suggestion"):
            camera_setup = analysis_metadata.get("camera_setup", "")
            if camera_setup and len(camera_setup) > 10:
                return _format_camera_setup(camera_setup)
        
        # Detect scene type and provide appropriate camera setup
        scene_type = _detect_scene_from_content(description)
        return _get_scene_camera_setup(scene_type)
        
    except Exception as e:
        logger.warning(f"Camera setup detection failed: {e}")
        return "shot on professional camera"


def _format_camera_setup(raw_setup: str) -> str:
    """Format camera setup into clean, concise format"""
    try:
        # Extract camera model
        camera_patterns = [
            r'(Canon EOS R\d+)',
            r'(Sony A\d+[^\s,]*)',
            r'(Leica [^\s,]+)',
            r'(Phase One [^\s,]+)',
            r'(Hasselblad [^\s,]+)',
            r'(ARRI [^\s,]+)',
            r'(RED [^\s,]+)'
        ]
        
        camera = None
        for pattern in camera_patterns:
            match = re.search(pattern, raw_setup, re.IGNORECASE)
            if match:
                camera = match.group(1)
                break
        
        # Extract lens info
        lens_pattern = r'(\d+mm[^,]*f/[\d.]+[^,]*)'
        lens_match = re.search(lens_pattern, raw_setup, re.IGNORECASE)
        lens = lens_match.group(1) if lens_match else None
        
        # Extract ISO
        iso_pattern = r'(ISO \d+)'
        iso_match = re.search(iso_pattern, raw_setup, re.IGNORECASE)
        iso = iso_match.group(1) if iso_match else None
        
        # Build clean setup
        parts = []
        if camera:
            parts.append(camera)
        if lens:
            parts.append(lens)
        if iso:
            parts.append(iso)
        
        if parts:
            return f"shot on {', '.join(parts)}"
        else:
            return "professional photography"
            
    except Exception as e:
        logger.warning(f"Camera setup formatting failed: {e}")
        return "professional photography"


def _detect_scene_from_content(description: str) -> str:
    """Detect scene type from description content"""
    description_lower = description.lower()
    
    # Scene detection patterns
    if any(term in description_lower for term in ["portrait", "person", "man", "woman", "face"]):
        return "portrait"
    elif any(term in description_lower for term in ["landscape", "mountain", "horizon", "nature", "outdoor"]):
        return "landscape"
    elif any(term in description_lower for term in ["street", "urban", "city", "building", "crowd"]):
        return "street"
    elif any(term in description_lower for term in ["architecture", "building", "structure", "interior"]):
        return "architecture"
    else:
        return "general"


def _get_scene_camera_setup(scene_type: str) -> str:
    """Get camera setup based on scene type"""
    setups = {
        "portrait": "shot on Canon EOS R5, 85mm f/1.4 lens, ISO 200",
        "landscape": "shot on Phase One XT, 24-70mm f/4 lens, ISO 100", 
        "street": "shot on Leica M11, 35mm f/1.4 lens, ISO 800",
        "architecture": "shot on Canon EOS R5, 24-70mm f/2.8 lens, ISO 100",
        "general": "shot on Canon EOS R6, 50mm f/1.8 lens, ISO 400"
    }
    
    return setups.get(scene_type, setups["general"])


def _get_essential_keywords(description: str, camera_setup: str, analysis_metadata: Optional[Dict[str, Any]]) -> List[str]:
    """Get essential style keywords without redundancy"""
    try:
        keywords = []
        description_lower = description.lower()
        
        # Only add depth of field if not already mentioned
        if "depth" not in description_lower and "bokeh" not in description_lower:
            if any(term in camera_setup for term in ["f/1.4", "f/2.8", "85mm"]):
                keywords.append("shallow depth of field")
        
        # Add professional photography only if no specific camera mentioned
        if "shot on" not in camera_setup:
            keywords.append("professional photography")
        
        # Scene-specific keywords
        if "portrait" in description_lower and "studio lighting" not in description_lower:
            keywords.append("professional portrait")
        
        # Technical quality (only if needed)
        if len(keywords) < 2:
            keywords.append("high quality")
        
        return keywords[:3]  # Limit to 3 essential keywords
        
    except Exception as e:
        logger.warning(f"Keyword extraction failed: {e}")
        return ["professional photography"]


def _build_optimized_prompt(description: str, camera_setup: str, keywords: List[str]) -> str:
    """Build final optimized prompt with proper structure"""
    try:
        # Structure: Description + Technical + Style
        parts = []
        
        # Core description (clean and concise)
        if description:
            parts.append(description)
        
        # Technical setup
        if camera_setup:
            parts.append(camera_setup)
        
        # Essential keywords
        if keywords:
            parts.extend(keywords)
        
        # Join with consistent separator
        result = ", ".join(parts)
        
        # Final cleanup
        result = re.sub(r'\s*,\s*,+', ',', result)  # Remove double commas
        result = re.sub(r'\s+', ' ', result)  # Clean spaces
        result = result.strip().rstrip(',')  # Remove trailing comma
        
        # Ensure it starts with capital letter
        if result:
            result = result[0].upper() + result[1:] if len(result) > 1 else result.upper()
        
        return result
        
    except Exception as e:
        logger.error(f"Prompt building failed: {e}")
        return "Professional photograph"


def _create_fallback_prompt(original_prompt: str) -> str:
    """Create fallback prompt when optimization fails"""
    try:
        # Extract first meaningful sentence
        sentences = re.split(r'[.!?]', original_prompt)
        if sentences:
            clean_sentence = sentences[0].strip()
            # Remove verbose starters
            clean_sentence = re.sub(r'^(This image shows|The image depicts|This photograph)', '', clean_sentence, flags=re.IGNORECASE)
            clean_sentence = clean_sentence.strip()
            
            if len(clean_sentence) > 20:
                return f"{clean_sentence}, professional photography"
        
        return "Professional photograph with technical excellence"
        
    except Exception:
        return "Professional photograph"


def calculate_prompt_score(prompt: str, analysis_data: Optional[Dict[str, Any]] = None) -> Tuple[int, Dict[str, int]]:
    """
    Calculate enhanced quality score with professional cinematography criteria
    
    Args:
        prompt: The prompt to score
        analysis_data: Enhanced analysis data with cinematography context
        
    Returns:
        Tuple of (total_score, breakdown_dict)
    """
    if not prompt:
        return 0, {"prompt_quality": 0, "technical_details": 0, "professional_cinematography": 0, "multi_engine_optimization": 0}
    
    breakdown = {}
    
    # Enhanced Prompt Quality (0-25 points)
    length_score = min(15, len(prompt) // 10)  # Reward appropriate length
    detail_score = min(10, len(prompt.split(',')) * 2)  # Reward structured detail
    breakdown["prompt_quality"] = int(length_score + detail_score)
    
    # Technical Details with Cinematography Focus (0-25 points)
    tech_score = 0
    
    # Cinema equipment (higher scores for professional gear)
    cinema_equipment = ['Canon EOS R', 'Sony A1', 'Leica', 'Hasselblad', 'Phase One', 'ARRI', 'RED']
    for equipment in cinema_equipment:
        if equipment.lower() in prompt.lower():
            tech_score += 8
            break
    
    # Lens specifications
    if re.search(r'\d+mm.*f/[\d.]+', prompt):
        tech_score += 6
    
    # ISO settings
    if re.search(r'ISO \d+', prompt):
        tech_score += 4
    
    # Professional terminology
    tech_keywords = ['shot on', 'lens', 'depth of field', 'bokeh']
    tech_score += sum(3 for keyword in tech_keywords if keyword in prompt.lower())
    
    breakdown["technical_details"] = min(25, tech_score)
    
    # Professional Cinematography (0-25 points)
    cinema_score = 0
    
    # Professional lighting techniques
    lighting_terms = ['professional lighting', 'studio lighting', 'natural lighting']
    cinema_score += sum(4 for term in lighting_terms if term in prompt.lower())
    
    # Composition techniques
    composition_terms = ['composition', 'depth of field', 'bokeh', 'shallow depth']
    cinema_score += sum(3 for term in composition_terms if term in prompt.lower())
    
    # Professional context bonus
    if analysis_data and analysis_data.get("has_camera_suggestion"):
        cinema_score += 6
    
    breakdown["professional_cinematography"] = min(25, cinema_score)
    
    # Multi-Engine Optimization (0-25 points)
    optimization_score = 0
    
    # Check for technical specifications
    if re.search(r'(?:Canon|Sony|Leica|Phase One)', prompt):
        optimization_score += 10
    
    # Complete technical specs
    if re.search(r'\d+mm.*f/[\d.]+.*ISO \d+', prompt):
        optimization_score += 8
    
    # Professional terminology
    pro_terms = ['professional', 'shot on', 'high quality']
    optimization_score += sum(2 for term in pro_terms if term in prompt.lower())
    
    # Length efficiency bonus (reward conciseness)
    word_count = len(prompt.split())
    if 30 <= word_count <= 60:  # Optimal range
        optimization_score += 5
    elif word_count <= 30:
        optimization_score += 3
    
    breakdown["multi_engine_optimization"] = min(25, optimization_score)
    
    # Calculate total
    total_score = sum(breakdown.values())
    
    return total_score, breakdown


def calculate_professional_enhanced_score(prompt: str, analysis_data: Optional[Dict[str, Any]] = None) -> Tuple[int, Dict[str, int]]:
    """
    Enhanced scoring with professional cinematography criteria
    
    Args:
        prompt: The prompt to score
        analysis_data: Analysis data with cinematography context
        
    Returns:
        Tuple of (total_score, breakdown_dict)
    """
    return calculate_prompt_score(prompt, analysis_data)


def get_score_grade(score: int) -> Dict[str, str]:
    """
    Get grade information for a score
    
    Args:
        score: Numeric score
        
    Returns:
        Dictionary with grade and color information
    """
    from config import SCORING_CONFIG
    
    for threshold, grade_info in sorted(SCORING_CONFIG["grade_thresholds"].items(), reverse=True):
        if score >= threshold:
            return grade_info
    
    # Default to lowest grade
    return SCORING_CONFIG["grade_thresholds"][0]


def format_analysis_report(analysis_data: Dict[str, Any], processing_time: float) -> str:
    """
    Format analysis data into a readable report with cinematography insights
    
    Args:
        analysis_data: Analysis results with cinematography context
        processing_time: Time taken for processing
        
    Returns:
        Formatted markdown report
    """
    model_used = analysis_data.get("model", "Unknown")
    prompt_length = len(analysis_data.get("prompt", ""))
    has_cinema_context = analysis_data.get("cinematography_context_applied", False)
    scene_type = analysis_data.get("scene_type", "general")
    
    report = f"""**🎬 PHRAMER AI ANALYSIS COMPLETE**
**Model:** {model_used} β€’ **Time:** {processing_time:.1f}s β€’ **Length:** {prompt_length} chars

**πŸ“Š CINEMATOGRAPHY ANALYSIS:**
**Scene Type:** {scene_type.replace('_', ' ').title()}
**Professional Context:** {'βœ… Applied' if has_cinema_context else '❌ Not Applied'}

**🎯 OPTIMIZATIONS APPLIED:**
βœ… Clean description extraction
βœ… Professional camera configuration
βœ… Essential keyword optimization
βœ… Token economy optimization
βœ… Multi-engine compatibility
βœ… Redundancy elimination

**⚑ Powered by Pariente AI for MIA TV Series**"""
    
    return report


def safe_execute(func, *args, **kwargs) -> Tuple[bool, Any]:
    """
    Safely execute a function with error handling
    
    Args:
        func: Function to execute
        *args: Function arguments
        **kwargs: Function keyword arguments
        
    Returns:
        Tuple of (success: bool, result: Any)
    """
    try:
        result = func(*args, **kwargs)
        return True, result
    except Exception as e:
        logger.error(f"Safe execution failed for {func.__name__}: {e}")
        return False, str(e)


def truncate_text(text: str, max_length: int = 100) -> str:
    """
    Truncate text to specified length with ellipsis
    
    Args:
        text: Text to truncate
        max_length: Maximum length
        
    Returns:
        Truncated text
    """
    if not text or len(text) <= max_length:
        return text
    
    return text[:max_length-3] + "..."


def enhance_prompt_with_cinematography_knowledge(original_prompt: str, scene_type: str = "default") -> str:
    """
    Enhance prompt with professional cinematography knowledge
    
    Args:
        original_prompt: Base prompt text
        scene_type: Detected scene type
        
    Returns:
        Enhanced prompt with cinematography context
    """
    try:
        # Import here to avoid circular imports
        from professional_photography import enhance_flux_prompt_with_professional_knowledge
        
        # Apply professional cinematography enhancement
        enhanced = enhance_flux_prompt_with_professional_knowledge(original_prompt)
        
        logger.info(f"Enhanced prompt with cinematography knowledge for {scene_type} scene")
        return enhanced
        
    except ImportError:
        logger.warning("Professional photography module not available")
        return original_prompt
    except Exception as e:
        logger.warning(f"Cinematography enhancement failed: {e}")
        return original_prompt


# Export main functions
__all__ = [
    "setup_logging",
    "optimize_image", 
    "validate_image",
    "clean_memory",
    "apply_flux_rules",
    "calculate_prompt_score",
    "calculate_professional_enhanced_score",
    "get_score_grade",
    "format_analysis_report",
    "safe_execute",
    "truncate_text",
    "enhance_prompt_with_cinematography_knowledge",
    "detect_scene_type_from_analysis"
]