File size: 18,205 Bytes
68404e4
 
 
 
 
 
 
 
 
 
 
 
 
5613724
 
 
68404e4
 
 
 
 
 
5613724
 
68404e4
5613724
 
68404e4
 
5613724
 
 
 
 
 
 
 
 
 
68404e4
 
 
5613724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68404e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5613724
 
 
68404e4
 
 
 
 
 
 
 
 
5613724
68404e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5613724
68404e4
 
 
 
 
 
 
 
 
 
 
 
5613724
68404e4
5613724
68404e4
5613724
 
 
68404e4
 
 
 
 
 
5613724
68404e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5613724
 
 
 
 
 
 
 
68404e4
5613724
68404e4
 
 
5613724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68404e4
5613724
 
 
 
 
 
 
 
 
 
68404e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5613724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68404e4
5613724
 
 
 
68404e4
5613724
 
 
 
 
 
 
 
 
 
 
 
 
 
68404e4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
#!/usr/bin/env python
"""
This script runs a Gradio App for the Open-Sora model.

Usage:
    python demo.py <config-path>
"""

import argparse
import importlib
import os
import subprocess
import sys
import re
import json
import math

import spaces
import torch

import gradio as gr


MODEL_TYPES = ["v1.1"]
CONFIG_MAP = {
    "v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py",
    "v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py",
}
HF_STDIT_MAP = {
    "v1.1-stage2": "hpcai-tech/OpenSora-STDiT-v2-stage2",
    "v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3",
}
RESOLUTION_MAP = {
    "144p": (144, 256),
    "240p": (240, 426),
    "360p": (360, 480),
    "480p": (480, 858),
    "720p": (720, 1280),
    "1080p": (1080, 1920)
}


# ============================
# Utils
# ============================
def collect_references_batch(reference_paths, vae, image_size):
    from opensora.datasets.utils import read_from_path

    refs_x = []
    for reference_path in reference_paths:
        if reference_path is None:
            refs_x.append([])
            continue
        ref_path = reference_path.split(";")
        ref = []
        for r_path in ref_path:
            r = read_from_path(r_path, image_size, transform_name="resize_crop")
            r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
            r_x = r_x.squeeze(0)
            ref.append(r_x)
        refs_x.append(ref)
    # refs_x: [batch, ref_num, C, T, H, W]
    return refs_x


def process_mask_strategy(mask_strategy):
    mask_batch = []
    mask_strategy = mask_strategy.split(";")
    for mask in mask_strategy:
        mask_group = mask.split(",")
        assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"
        if len(mask_group) == 1:
            mask_group.extend(["0", "0", "0", "1", "0"])
        elif len(mask_group) == 2:
            mask_group.extend(["0", "0", "1", "0"])
        elif len(mask_group) == 3:
            mask_group.extend(["0", "1", "0"])
        elif len(mask_group) == 4:
            mask_group.extend(["1", "0"])
        elif len(mask_group) == 5:
            mask_group.append("0")
        mask_batch.append(mask_group)
    return mask_batch


def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):
    masks = []
    for i, mask_strategy in enumerate(mask_strategys):
        mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
        if mask_strategy is None:
            masks.append(mask)
            continue
        mask_strategy = process_mask_strategy(mask_strategy)
        for mst in mask_strategy:
            loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
            loop_id = int(loop_id)
            if loop_id != loop_i:
                continue
            m_id = int(m_id)
            m_ref_start = int(m_ref_start)
            m_length = int(m_length)
            m_target_start = int(m_target_start)
            edit_ratio = float(edit_ratio)
            ref = refs_x[i][m_id]  # [C, T, H, W]
            if m_ref_start < 0:
                m_ref_start = ref.shape[1] + m_ref_start
            if m_target_start < 0:
                # z: [B, C, T, H, W]
                m_target_start = z.shape[2] + m_target_start
            z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
            mask[m_target_start : m_target_start + m_length] = edit_ratio
        masks.append(mask)
    masks = torch.stack(masks)
    return masks


def process_prompts(prompts, num_loop):
    from opensora.models.text_encoder.t5 import text_preprocessing

    ret_prompts = []
    for prompt in prompts:
        if prompt.startswith("|0|"):
            prompt_list = prompt.split("|")[1:]
            text_list = []
            for i in range(0, len(prompt_list), 2):
                start_loop = int(prompt_list[i])
                text = prompt_list[i + 1]
                text = text_preprocessing(text)
                end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop
                text_list.extend([text] * (end_loop - start_loop))
            assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"
            ret_prompts.append(text_list)
        else:
            prompt = text_preprocessing(prompt)
            ret_prompts.append([prompt] * num_loop)
    return ret_prompts


def extract_json_from_prompts(prompts):
    additional_infos = []
    ret_prompts = []
    for prompt in prompts:
        parts = re.split(r"(?=[{\[])", prompt)
        assert len(parts) <= 2, f"Invalid prompt: {prompt}"
        ret_prompts.append(parts[0])
        if len(parts) == 1:
            additional_infos.append({})
        else:
            additional_infos.append(json.loads(parts[1]))
    return ret_prompts, additional_infos


# ============================
# Runtime Environment
# ============================
def install_dependencies(enable_optimization=False):
    """
    Install the required dependencies for the demo if they are not already installed.
    """

    def _is_package_available(name) -> bool:
        try:
            importlib.import_module(name)
            return True
        except (ImportError, ModuleNotFoundError):
            return False

    # flash attention is needed no matter optimization is enabled or not
    # because Hugging Face transformers detects flash_attn is a dependency in STDiT
    # thus, we need to install it no matter what
    if not _is_package_available("flash_attn"):
        subprocess.run(
            f"{sys.executable} -m pip install flash-attn --no-build-isolation",
            env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
            shell=True,
        )

    if enable_optimization:
        # install apex for fused layernorm
        if not _is_package_available("apex"):
            subprocess.run(
                f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git',
                shell=True,
            )

        # install ninja
        if not _is_package_available("ninja"):
            subprocess.run(f"{sys.executable} -m pip install ninja", shell=True)

        # install xformers
        if not _is_package_available("xformers"):
            subprocess.run(
                f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers",
                shell=True,
            )


# ============================
# Model-related
# ============================
def read_config(config_path):
    """
    Read the configuration file.
    """
    from mmengine.config import Config

    return Config.fromfile(config_path)


def build_models(model_type, config, enable_optimization=False):
    """
    Build the models for the given model type and configuration.
    """
    # build vae
    from opensora.registry import MODELS, build_module

    vae = build_module(config.vae, MODELS).cuda()

    # build text encoder
    text_encoder = build_module(config.text_encoder, MODELS)  # T5 must be fp32
    text_encoder.t5.model = text_encoder.t5.model.cuda()

    # build stdit
    # we load model from HuggingFace directly so that we don't need to
    # handle model download logic in HuggingFace Space
    from transformers import AutoModel

    stdit = AutoModel.from_pretrained(
        HF_STDIT_MAP[model_type],
        enable_flash_attn=enable_optimization,
        trust_remote_code=True,
    ).cuda()

    # build scheduler
    from opensora.registry import SCHEDULERS

    scheduler = build_module(config.scheduler, SCHEDULERS)

    # hack for classifier-free guidance
    text_encoder.y_embedder = stdit.y_embedder

    # move modelst to device
    vae = vae.to(torch.bfloat16).eval()
    text_encoder.t5.model = text_encoder.t5.model.eval()  # t5 must be in fp32
    stdit = stdit.to(torch.bfloat16).eval()

    # clear cuda
    torch.cuda.empty_cache()
    return vae, text_encoder, stdit, scheduler


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model-type",
        default="v1.1-stage3",
        choices=MODEL_TYPES,
        help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
    )
    parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
    parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
    parser.add_argument("--host", default=None, type=str, help="The host to run the Gradio App on.")
    parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
    parser.add_argument(
        "--enable-optimization",
        action="store_true",
        help="Whether to enable optimization such as flash attention and fused layernorm",
    )
    return parser.parse_args()


# ============================
# Main Gradio Script
# ============================
# as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text
# so we can't pass the models to `run_inference` as arguments.
# instead, we need to define them globally so that we can access these models inside `run_inference`

# read config
args = parse_args()
config = read_config(CONFIG_MAP[args.model_type])

# make outputs dir
os.makedirs(args.output, exist_ok=True)

# disable torch jit as it can cause failure in gradio SDK
# gradio sdk uses torch with cuda 11.3
torch.jit._state.disable()

# set up
install_dependencies(enable_optimization=args.enable_optimization)

# import after installation
from opensora.datasets import IMG_FPS, save_sample
from opensora.utils.misc import to_torch_dtype

# some global variables
dtype = to_torch_dtype(config.dtype)
device = torch.device("cuda")

# build model
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)


@spaces.GPU(duration=200)
def run_inference(mode, prompt_text, resolution, length, reference_image):
    with torch.inference_mode():
        # ======================
        # 1. Preparation
        # ======================
        # parse the inputs
        resolution = RESOLUTION_MAP[resolution]
        
        # compute number of loops
        num_seconds = int(length.rstrip('s'))
        total_number_of_frames = num_seconds * config.fps / config.frame_interval
        num_loop = math.ceil(total_number_of_frames / config.num_frames)

        # prepare model args
        model_args = dict()
        height = torch.tensor([resolution[0]], device=device, dtype=dtype)
        width = torch.tensor([resolution[1]], device=device, dtype=dtype)
        num_frames = torch.tensor([config.num_frames], device=device, dtype=dtype)
        ar = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype)
        if config.num_frames == 1:
            config.fps = IMG_FPS
        fps = torch.tensor([config.fps], device=device, dtype=dtype)
        model_args["height"] = height
        model_args["width"] = width
        model_args["num_frames"] = num_frames
        model_args["ar"] = ar
        model_args["fps"] = fps

        # compute latent size
        input_size = (config.num_frames, *resolution)
        latent_size = vae.get_latent_size(input_size)

        # process prompt
        prompt_raw = [prompt_text]
        prompt_raw, _ = extract_json_from_prompts(prompt_raw)
        prompt_loops = process_prompts(prompt_raw, num_loop)
        video_clips = []

        # prepare mask strategy
        if mode == "Text2Video":
            mask_strategy = [None]
        elif mode == "Image2Video":
            mask_strategy = ['0']
        else:
            raise ValueError(f"Invalid mode: {mode}")

        # =========================
        # 2. Load reference images
        # =========================
        if mode == "Text2Video":
            refs_x = collect_references_batch([None], vae, resolution)
        elif mode == "Image2Video":
            # save image to disk
            from PIL import Image
            im = Image.fromarray(reference_image)
            im.save("test.jpg")
            refs_x = collect_references_batch(["test.jpg"], vae, resolution)
        else:
            raise ValueError(f"Invalid mode: {mode}")

        # 4.3. long video generation
        for loop_i in range(num_loop):
            # 4.4 sample in hidden space
            batch_prompts = [prompt[loop_i] for prompt in prompt_loops]
            z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)

            # 4.5. apply mask strategy
            masks = None

            # if cfg.reference_path is not None:
            if loop_i > 0:
                ref_x = vae.encode(video_clips[-1])
                for j, refs in enumerate(refs_x):
                    if refs is None:
                        refs_x[j] = [ref_x[j]]
                    else:
                        refs.append(ref_x[j])
                    if mask_strategy[j] is None:
                        mask_strategy[j] = ""
                    else:
                        mask_strategy[j] += ";"
                    mask_strategy[
                        j
                    ] += f"{loop_i},{len(refs)-1},-{config.condition_frame_length},0,{config.condition_frame_length}"

            masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)

            # 4.6. diffusion sampling
            samples = scheduler.sample(
                stdit,
                text_encoder,
                z=z,
                prompts=batch_prompts,
                device=device,
                additional_args=model_args,
                mask=masks,  # scheduler must support mask
            )
            samples = vae.decode(samples.to(dtype))
            video_clips.append(samples)

            # 4.7. save video
            if loop_i == num_loop - 1:
                video_clips_list = [
                    video_clips[0][0]] + [video_clips[i][0][:, config.condition_frame_length :] 
                    for i in range(1, num_loop)
                ]
                video = torch.cat(video_clips_list, dim=1)
                save_path = f"{args.output}/sample"
                saved_path = save_sample(video, fps=config.fps // config.frame_interval, save_path=save_path, force_video=True)
                return saved_path


def main():
    # create demo
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                gr.HTML(
                    """
                <div style='text-align: center;'>
                    <p align="center">
                        <img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/>
                    </p>
                    <div style="display: flex; gap: 10px; justify-content: center;">
                        <a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a>
                        <a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&amp"></a>
                        <a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&amp"></a>
                        <a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&amp"></a>
                        <a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&amp"></a>
                        <a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&amp"></a>
                        <a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a>
                    </div>
                    <h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1>
                </div>
                """
                )

        with gr.Row():
            with gr.Column():
                mode = gr.Radio(
                    choices=["Text2Video", "Image2Video"], 
                    value="Text2Video",
                    label="Usage", 
                    info="Choose your usage scenario",
                )
                prompt_text = gr.Textbox(
                    label="Prompt",
                    placeholder="Describe your video here",
                    lines=4,
                )
                resolution = gr.Radio(
                     choices=["144p", "240p", "360p", "480p", "720p", "1080p"],
                     value="144p",
                    label="Resolution", 
                )
                length = gr.Radio(
                    choices=["2s", "4s", "8s"], 
                    value="2s",
                    label="Video Length", 
                    info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time."
                )

                reference_image = gr.Image(
                    label="Reference Image (only used for Image2Video)",
                )
            
            with gr.Column():
                output_video = gr.Video(
                    label="Output Video",
                    height="100%"
                )

        with gr.Row():
             submit_button = gr.Button("Generate video")
        

        submit_button.click(
             fn=run_inference, 
             inputs=[mode, prompt_text, resolution, length, reference_image], 
             outputs=output_video
             )

    # launch
    demo.launch(server_port=args.port, server_name=args.host, share=args.share)


if __name__ == "__main__":
    main()