File size: 11,885 Bytes
f8a748e
7f48662
 
1876385
f8a748e
7f48662
f8a748e
63ee519
200a130
c38e273
200a130
f8a748e
ef2764c
63ee519
5ed5dc0
63ee519
7f48662
63ee519
7f48662
 
 
f8a748e
63ee519
7f48662
 
 
f8a748e
7f48662
200a130
7f48662
200a130
63ee519
200a130
44bc074
7f48662
 
 
200a130
63ee519
200a130
 
 
c38e273
730f5fd
c38e273
 
 
 
 
4004f94
730f5fd
c38e273
4004f94
0d3229d
c38e273
200a130
730f5fd
89a8b3c
200a130
 
 
 
4004f94
730f5fd
eb7f8ad
730f5fd
0d3229d
4004f94
 
 
 
 
 
 
 
 
730f5fd
4004f94
 
0d3229d
200a130
 
730f5fd
 
 
 
 
 
 
 
 
 
0d3229d
730f5fd
 
 
 
 
 
 
 
 
 
 
 
0d3229d
730f5fd
 
 
 
 
4004f94
 
 
 
730f5fd
 
 
0d3229d
730f5fd
 
 
 
 
 
 
 
 
 
4004f94
 
0d3229d
4004f94
 
 
 
 
 
 
 
 
730f5fd
4004f94
 
0d3229d
4004f94
 
 
 
 
 
 
 
 
730f5fd
4004f94
 
0d3229d
4004f94
 
 
 
 
 
200a130
 
4004f94
730f5fd
eb7f8ad
44bc074
0d3229d
200a130
4004f94
 
 
 
 
 
 
 
730f5fd
4004f94
 
0d3229d
4004f94
730f5fd
 
 
 
 
 
 
 
 
 
 
0d3229d
730f5fd
4004f94
 
 
 
 
 
 
 
730f5fd
4004f94
 
0d3229d
4004f94
687aaef
730f5fd
 
 
 
687aaef
 
 
730f5fd
687aaef
730f5fd
0d3229d
687aaef
200a130
 
63ee519
5ed5dc0
 
200a130
63ee519
4004f94
63ee519
 
 
 
 
4004f94
63ee519
 
 
 
 
730f5fd
63ee519
 
 
 
 
 
 
4004f94
7f48662
5ed5dc0
 
63ee519
7f48662
63ee519
4004f94
7f48662
 
63ee519
200a130
63ee519
 
200a130
 
 
63ee519
 
 
 
200a130
63ee519
200a130
63ee519
200a130
 
63ee519
200a130
 
63ee519
200a130
63ee519
730f5fd
 
 
63ee519
200a130
 
 
63ee519
200a130
 
44bc074
63ee519
44bc074
 
5ed5dc0
63ee519
5ed5dc0
 
63ee519
 
200a130
7f48662
63ee519
 
7f48662
63ee519
7f48662
 
200a130
 
 
 
 
 
 
 
730f5fd
200a130
44bc074
5ed5dc0
200a130
 
 
 
63ee519
200a130
 
 
 
 
 
 
 
 
 
 
730f5fd
200a130
44bc074
5ed5dc0
200a130
 
f8a748e
 
63ee519
7f48662
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import gradio as gr
from PIL import Image
import os
import spaces

from OmniGen import OmniGenPipeline

# OmniGenモデルの初期化
pipe = OmniGenPipeline.from_pretrained(
    "Shitao/OmniGen-v1"
)

@spaces.GPU(duration=180)
# 画像生成の主要機能
def generate_image(text, img1, img2, img3, height, width, guidance_scale, img_guidance_scale, inference_steps, seed, separate_cfg_infer):
    # 入力画像の処理
    input_images = [img1, img2, img3]
    # Noneの画像を除外
    input_images = [img for img in input_images if img is not None]
    if len(input_images) == 0:
        input_images = None

    # モデルを使用して画像生成
    output = pipe(
        prompt=text,
        input_images=input_images,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        img_guidance_scale=1.6,
        num_inference_steps=inference_steps,
        separate_cfg_infer=True, # Falseにすると推論が高速化
        use_kv_cache=False,
        seed=seed,
    )
    img = output[0]
    return img

# テストケース用のサンプルデータを取得

def get_example():
    case = [
        [
            "A curly-haired man in a red shirt is drinking tea.",
            None,
            None,
            None,
            1024,
            1024,
            2.5,
            1.6,
            50,
            0,
            True,
        ],
        [
            "The woman in <img><|image_1|></img> waves her hand happily in the crowd",
            "./imgs/test_cases/zhang.png",
            None,
            None,
            1024,
            1024,
            2.5,
            1.9,
            50,
            128,
            True,
        ],
        [
            "A man in a black shirt is reading a book. The man is the right man in <img><|image_1|></img>.",
            "./imgs/test_cases/two_man.jpg",
            None,
            None,
            1024,
            1024,
            2.5,
            1.6,
            50,
            0,
            True,
        ],
        [
            "Two woman are raising fried chicken legs in a bar. A woman is <img><|image_1|></img>. The other woman is <img><|image_2|></img>.",
            "./imgs/test_cases/mckenna.jpg",
            "./imgs/test_cases/Amanda.jpg",
            None,
            1024,
            1024,
            2.5,
            1.8,
            50,
            168,
            True,
        ],
        [
            "A man and a short-haired woman with a wrinkled face are standing in front of a bookshelf in a library. The man is the man in the middle of <img><|image_1|></img>, and the woman is oldest woman in <img><|image_2|></img>",
            "./imgs/test_cases/1.jpg",
            "./imgs/test_cases/2.jpg",
            None,
            1024,
            1024,
            2.5,
            1.6,
            50,
            60,
            True,
        ],
        [
            "A man and a woman are sitting at a classroom desk. The man is the man with yellow hair in <img><|image_1|></img>. The woman is the woman on the left of <img><|image_2|></img>",
            "./imgs/test_cases/3.jpg",
            "./imgs/test_cases/4.jpg",
            None,
            1024,
            1024,
            2.5,
            1.8,
            50,
            66,
            True,
        ],
        [
            "The flower <img><|image_1|><\/img> is placed in the vase which is in the middle of <img><|image_2|><\/img> on a wooden table of a living room",
            "./imgs/test_cases/rose.jpg",
            "./imgs/test_cases/vase.jpg",
            None,
            1024,
            1024,
            2.5,
            1.6,
            50,
            0,
            True,
        ],
        [
            "<img><|image_1|><img>\n Remove the woman's earrings. Replace the mug with a clear glass filled with sparkling iced cola.",
            "./imgs/demo_cases/t2i_woman_with_book.png",
            None,
            None,
            1024,
            1024,
            2.5,
            1.6,
            50,
            222,
            True,
        ],
        [
            "Detect the skeleton of human in this image: <img><|image_1|></img>.",
            "./imgs/test_cases/control.jpg",
            None,
            None,
            1024,
            1024,
            2.0,
            1.6,
            50,
            0,
            True,
        ],
        [
            "Generate a new photo using the following picture and text as conditions: <img><|image_1|><img>\n A young boy is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him.",
            "./imgs/demo_cases/skeletal.png",
            None,
            None,
            1024,
            1024,
            2,
            1.6,
            50,
            42,
            True,
        ],
        [
            "Following the pose of this image <img><|image_1|><img>, generate a new photo: A young boy is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him.",
            "./imgs/demo_cases/edit.png",
            None,
            None,
            1024,
            1024,
            2.0,
            1.6,
            50,
            123,
            True,
        ],
        [
            "Following the depth mapping of this image <img><|image_1|><img>, generate a new photo: A young girl is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him.",
            "./imgs/demo_cases/edit.png",
            None,
            None,
            1024,
            1024,
            2.0,
            1.6,
            50,
            1,
            True,
        ],
        [
            "<img><|image_1|><\/img> What item can be used to see the current time? Please remove it.",
            "./imgs/test_cases/watch.jpg",
            None,
            None,
            1024,
            1024,
            2.5,
            1.6,
            50,
            0,
            True,
        ],
        [
            "According to the following examples, generate an output for the input.\nInput: <img><|image_1|></img>\nOutput: <img><|image_2|></img>\n\nInput: <img><|image_3|></img>\nOutput: ",
            "./imgs/test_cases/icl1.jpg",
            "./imgs/test_cases/icl2.jpg",
            "./imgs/test_cases/icl3.jpg",
            1024,
            1024,
            2.5,
            1.6,
            50,
            1,
            True,
        ],
    ]
    return case
# サンプル実行用の関数
def run_for_examples(text, img1, img2, img3, height, width, guidance_scale, img_guidance_scale, inference_steps, seed, separate_cfg_infer,):    
    return generate_image(text, img1, img2, img3, height, width, guidance_scale, img_guidance_scale, inference_steps, seed, separate_cfg_infer,)

# アプリケーションの説明文
description = """
OmniGenは、以下のような様々なタスクを実行できる統合画像生成モデルです:
- テキストから画像への生成
- 被写体主導の生成
- アイデンティティを保持した生成
- 画像条件付き生成

マルチモーダルから画像を生成する場合:
- プロンプトには文字列を入力
- 入力画像はリストとして渡す
- プロンプト内の画像プレースホルダーは `<img><|image_*|></img>` 形式で指定
  (1番目の画像は <img><|image_1|></img>、2番目は <img><|image_2|></img>)

使用上のヒント:
- 色が過飽和な場合:`guidance_scale` を下げてください
- 画質が低い場合:より詳細なプロンプトを使用してください
- アニメ調の場合:プロンプトに `photo` を追加してみてください
- 生成済み画像の編集:同じseedは使用できません(例:生成時seed=0なら、編集時はseed=1など)
- 画像編集タスクでは、画像を編集指示の前に配置することを推奨
  (例:`<img><|image_1|></img> remove suit` を使用し、`remove suit <img><|image_1|></img>` は避ける)
"""

separate_cfg_infer_arg = False

# Gradio インターフェースの構築
with gr.Blocks() as demo:
    gr.Markdown("# OmniGen: 統合画像生成モデル [論文](https://arxiv.org/abs/2409.11340) [コード](https://github.com/VectorSpaceLab/OmniGen)")
    gr.Markdown(description)
    with gr.Row():
        with gr.Column():
            # プロンプト入力
            prompt_input = gr.Textbox(
                label="プロンプトを入力してください(i番目の入力画像は<img><|image_i|></img>で指定)", 
                placeholder="ここにプロンプトを入力..."
            )

            with gr.Row(equal_height=True):
                # 画像入力
                image_input_1 = gr.Image(label="画像1: <img><|image_1|></img>", type="filepath")
                image_input_2 = gr.Image(label="画像2: <img><|image_2|></img>", type="filepath")
                image_input_3 = gr.Image(label="画像3: <img><|image_3|></img>", type="filepath")

            # 画像サイズ設定
            height_input = gr.Slider(
                label="画像の高さ", minimum=256, maximum=2048, value=1024, step=16
            )
            width_input = gr.Slider(
                label="画像の幅", minimum=256, maximum=2048, value=1024, step=16
            )

            # 各種パラメータ設定
            guidance_scale_input = gr.Slider(
                label="ガイダンススケール", minimum=1.0, maximum=5.0, value=2.5, step=0.1
            )

            img_guidance_scale_input = gr.Slider(
                label="画像ガイダンススケール", minimum=1.0, maximum=2.0, value=1.6, step=0.1
            )

            num_inference_steps = gr.Slider(
                label="推論ステップ数", minimum=1, maximum=100, value=50, step=1
            )

            seed_input = gr.Slider(
                label="シード値", minimum=0, maximum=2147483647, value=42, step=1
            )

            separate_cfg_infer = gr.Checkbox(
                label="CFG推論を分離", info="分離CFG推論を有効にする"
            )

            # 生成ボタン
            generate_button = gr.Button("画像を生成")

        with gr.Column():
            # 出力画像表示
            output_image = gr.Image(label="生成された画像")

    # ボタンクリックイベントの設定
    generate_button.click(
        generate_image,
        inputs=[
            prompt_input,
            image_input_1,
            image_input_2,
            image_input_3,
            height_input,
            width_input,
            guidance_scale_input,
            img_guidance_scale_input,
            num_inference_steps,
            seed_input,
            separate_cfg_infer,
        ],
        outputs=output_image,
    )

    # サンプル例の設定
    gr.Examples(
        examples=get_example(),
        fn=run_for_examples,
        inputs=[
            prompt_input,
            image_input_1,
            image_input_2,
            image_input_3,
            height_input,
            width_input,
            guidance_scale_input,
            img_guidance_scale_input,
            num_inference_steps,
            seed_input,
            separate_cfg_infer,
        ],
        outputs=output_image,
    )

# アプリケーションの起動
demo.launch()