Spaces:
Running
Running
File size: 10,017 Bytes
b50f552 0556cb5 b50f552 0556cb5 b50f552 0556cb5 b50f552 ecb8e30 b50f552 fc208a2 b50f552 99c90b0 df86cb4 99c90b0 df86cb4 b50f552 df86cb4 b50f552 df86cb4 8c5574c 551ddca b50f552 df86cb4 b50f552 df86cb4 551ddca c52f232 df86cb4 b50f552 df86cb4 b50f552 df86cb4 b50f552 df86cb4 b50f552 df86cb4 b50f552 dff5a51 df86cb4 b50f552 df86cb4 b50f552 0556cb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
from __future__ import annotations
import os
import random
import uuid
import gradio as gr
import spaces
import numpy as np
import uuid
from diffusers import PixArtAlphaPipeline, LCMScheduler
import torch
from typing import Tuple
from datetime import datetime
DESCRIPTION = """ # Instant Image
### Super fast text to Image Generator.
### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.
### First Image processing takes time then images generate faster.
### Must Try -> Instant Video https://huggingface.co/spaces/KingNish/Instant-Video
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
PORT = int(os.getenv("DEMO_PORT", "15432"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Realistic",
"prompt": "Photorealistic {prompt} . Ulta-realistic, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, disfigured",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
NUM_IMAGES_PER_PROMPT = 1
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
if torch.cuda.is_available():
pipe = PixArtAlphaPipeline.from_pretrained(
"PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
torch_dtype=torch.float16,
use_safetensors=True,
)
if os.getenv('CONSISTENCY_DECODER', False):
print("Using DALL-E 3 Consistency Decoder")
pipe.vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
else:
pipe.to(device)
print("Loaded on Device!")
# speed-up T5
pipe.text_encoder.to_bettertransformer()
if USE_TORCH_COMPILE:
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
print("Model Compiled!")
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(duration=30)
def generate(
prompt: str,
negative_prompt: str = "",
style: str = DEFAULT_STYLE_NAME,
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
inference_steps: int = 4,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=0,
num_inference_steps=inference_steps,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
use_resolution_binning=use_resolution_binning,
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
print(image_paths)
return image_paths, seed
examples = [
"A Monkey with a happy face in the Sahara desert.",
"Eiffel Tower was Made up of ICE.",
"Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.",
"A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.",
"A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.",
"an astronaut sitting in a diner, eating fries, cinematic, analog film",
]
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Row(equal_height=False):
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Group():
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
# num_imgs = gr.Slider(
# label="Num Images",
# minimum=1,
# maximum=8,
# step=1,
# value=1,
# )
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Style",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
inference_steps = gr.Slider(
label="Steps",
minimum=4,
maximum=20,
step=1,
value=4,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
style_selection,
use_negative_prompt,
# num_imgs,
seed,
width,
height,
inference_steps,
randomize_seed,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
# demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=11900, debug=True)
|