File size: 23,209 Bytes
df86cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import torch
from diffusers import ImagePipelineOutput, PixArtAlphaPipeline, AutoencoderKL, Transformer2DModel, \
    DPMSolverMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.embeddings import PixArtAlphaTextProjection, PatchEmbed
from diffusers.models.normalization import AdaLayerNormSingle
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import retrieve_timesteps
from typing import Callable, List, Optional, Tuple, Union

from diffusers.utils import deprecate
from torch import nn
from transformers import T5Tokenizer, T5EncoderModel

ASPECT_RATIO_2048_BIN = {
    "0.25": [1024.0, 4096.0],
    "0.26": [1024.0, 3968.0],
    "0.27": [1024.0, 3840.0],
    "0.28": [1024.0, 3712.0],
    "0.32": [1152.0, 3584.0],
    "0.33": [1152.0, 3456.0],
    "0.35": [1152.0, 3328.0],
    "0.4": [1280.0, 3200.0],
    "0.42": [1280.0, 3072.0],
    "0.48": [1408.0, 2944.0],
    "0.5": [1408.0, 2816.0],
    "0.52": [1408.0, 2688.0],
    "0.57": [1536.0, 2688.0],
    "0.6": [1536.0, 2560.0],
    "0.68": [1664.0, 2432.0],
    "0.72": [1664.0, 2304.0],
    "0.78": [1792.0, 2304.0],
    "0.82": [1792.0, 2176.0],
    "0.88": [1920.0, 2176.0],
    "0.94": [1920.0, 2048.0],
    "1.0": [2048.0, 2048.0],
    "1.07": [2048.0, 1920.0],
    "1.13": [2176.0, 1920.0],
    "1.21": [2176.0, 1792.0],
    "1.29": [2304.0, 1792.0],
    "1.38": [2304.0, 1664.0],
    "1.46": [2432.0, 1664.0],
    "1.67": [2560.0, 1536.0],
    "1.75": [2688.0, 1536.0],
    "2.0": [2816.0, 1408.0],
    "2.09": [2944.0, 1408.0],
    "2.4": [3072.0, 1280.0],
    "2.5": [3200.0, 1280.0],
    "2.89": [3328.0, 1152.0],
    "3.0": [3456.0, 1152.0],
    "3.11": [3584.0, 1152.0],
    "3.62": [3712.0, 1024.0],
    "3.75": [3840.0, 1024.0],
    "3.88": [3968.0, 1024.0],
    "4.0": [4096.0, 1024.0]
}

ASPECT_RATIO_256_BIN = {
    "0.25": [128.0, 512.0],
    "0.28": [128.0, 464.0],
    "0.32": [144.0, 448.0],
    "0.33": [144.0, 432.0],
    "0.35": [144.0, 416.0],
    "0.4": [160.0, 400.0],
    "0.42": [160.0, 384.0],
    "0.48": [176.0, 368.0],
    "0.5": [176.0, 352.0],
    "0.52": [176.0, 336.0],
    "0.57": [192.0, 336.0],
    "0.6": [192.0, 320.0],
    "0.68": [208.0, 304.0],
    "0.72": [208.0, 288.0],
    "0.78": [224.0, 288.0],
    "0.82": [224.0, 272.0],
    "0.88": [240.0, 272.0],
    "0.94": [240.0, 256.0],
    "1.0": [256.0, 256.0],
    "1.07": [256.0, 240.0],
    "1.13": [272.0, 240.0],
    "1.21": [272.0, 224.0],
    "1.29": [288.0, 224.0],
    "1.38": [288.0, 208.0],
    "1.46": [304.0, 208.0],
    "1.67": [320.0, 192.0],
    "1.75": [336.0, 192.0],
    "2.0": [352.0, 176.0],
    "2.09": [368.0, 176.0],
    "2.4": [384.0, 160.0],
    "2.5": [400.0, 160.0],
    "3.0": [432.0, 144.0],
    "4.0": [512.0, 128.0]
}

ASPECT_RATIO_1024_BIN = {
    "0.25": [512.0, 2048.0],
    "0.28": [512.0, 1856.0],
    "0.32": [576.0, 1792.0],
    "0.33": [576.0, 1728.0],
    "0.35": [576.0, 1664.0],
    "0.4": [640.0, 1600.0],
    "0.42": [640.0, 1536.0],
    "0.48": [704.0, 1472.0],
    "0.5": [704.0, 1408.0],
    "0.52": [704.0, 1344.0],
    "0.57": [768.0, 1344.0],
    "0.6": [768.0, 1280.0],
    "0.68": [832.0, 1216.0],
    "0.72": [832.0, 1152.0],
    "0.78": [896.0, 1152.0],
    "0.82": [896.0, 1088.0],
    "0.88": [960.0, 1088.0],
    "0.94": [960.0, 1024.0],
    "1.0": [1024.0, 1024.0],
    "1.07": [1024.0, 960.0],
    "1.13": [1088.0, 960.0],
    "1.21": [1088.0, 896.0],
    "1.29": [1152.0, 896.0],
    "1.38": [1152.0, 832.0],
    "1.46": [1216.0, 832.0],
    "1.67": [1280.0, 768.0],
    "1.75": [1344.0, 768.0],
    "2.0": [1408.0, 704.0],
    "2.09": [1472.0, 704.0],
    "2.4": [1536.0, 640.0],
    "2.5": [1600.0, 640.0],
    "3.0": [1728.0, 576.0],
    "4.0": [2048.0, 512.0],
}

ASPECT_RATIO_512_BIN = {
    "0.25": [256.0, 1024.0],
    "0.28": [256.0, 928.0],
    "0.32": [288.0, 896.0],
    "0.33": [288.0, 864.0],
    "0.35": [288.0, 832.0],
    "0.4": [320.0, 800.0],
    "0.42": [320.0, 768.0],
    "0.48": [352.0, 736.0],
    "0.5": [352.0, 704.0],
    "0.52": [352.0, 672.0],
    "0.57": [384.0, 672.0],
    "0.6": [384.0, 640.0],
    "0.68": [416.0, 608.0],
    "0.72": [416.0, 576.0],
    "0.78": [448.0, 576.0],
    "0.82": [448.0, 544.0],
    "0.88": [480.0, 544.0],
    "0.94": [480.0, 512.0],
    "1.0": [512.0, 512.0],
    "1.07": [512.0, 480.0],
    "1.13": [544.0, 480.0],
    "1.21": [544.0, 448.0],
    "1.29": [576.0, 448.0],
    "1.38": [576.0, 416.0],
    "1.46": [608.0, 416.0],
    "1.67": [640.0, 384.0],
    "1.75": [672.0, 384.0],
    "2.0": [704.0, 352.0],
    "2.09": [736.0, 352.0],
    "2.4": [768.0, 320.0],
    "2.5": [800.0, 320.0],
    "3.0": [864.0, 288.0],
    "4.0": [1024.0, 256.0],
}


def pipeline_pixart_alpha_call(
        self,
        prompt: Union[str, List[str]] = None,
        negative_prompt: str = "",
        num_inference_steps: int = 20,
        timesteps: List[int] = None,
        guidance_scale: float = 4.5,
        num_images_per_prompt: Optional[int] = 1,
        height: Optional[int] = None,
        width: Optional[int] = None,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        prompt_attention_mask: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        clean_caption: bool = True,
        use_resolution_binning: bool = True,
        max_sequence_length: int = 120,
        **kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
    """
    Function invoked when calling the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
            instead.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        num_inference_steps (`int`, *optional*, defaults to 100):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        timesteps (`List[int]`, *optional*):
            Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
            timesteps are used. Must be in descending order.
        guidance_scale (`float`, *optional*, defaults to 4.5):
            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
            `guidance_scale` is defined as `w` of equation 2. of [Imagen
            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
            usually at the expense of lower image quality.
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        height (`int`, *optional*, defaults to self.unet.config.sample_size):
            The height in pixels of the generated image.
        width (`int`, *optional*, defaults to self.unet.config.sample_size):
            The width in pixels of the generated image.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
            [`schedulers.DDIMScheduler`], will be ignored for others.
        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
            to make generation deterministic.
        latents (`torch.FloatTensor`, *optional*):
            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor will ge generated by sampling using the supplied random `generator`.
        prompt_embeds (`torch.FloatTensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
            Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not
            provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
        negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
            Pre-generated attention mask for negative text embeddings.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generate image. Choose between
            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
        callback (`Callable`, *optional*):
            A function that will be called every `callback_steps` steps during inference. The function will be
            called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
        callback_steps (`int`, *optional*, defaults to 1):
            The frequency at which the `callback` function will be called. If not specified, the callback will be
            called at every step.
        clean_caption (`bool`, *optional*, defaults to `True`):
            Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
            be installed. If the dependencies are not installed, the embeddings will be created from the raw
            prompt.
        use_resolution_binning (`bool` defaults to `True`):
            If set to `True`, the requested height and width are first mapped to the closest resolutions using
            `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
            the requested resolution. Useful for generating non-square images.

    Examples:

    Returns:
        [`~pipelines.ImagePipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
            returned where the first element is a list with the generated images
    """
    if "mask_feature" in kwargs:
        deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
        deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
    # 1. Check inputs. Raise error if not correct
    height = height or self.transformer.config.sample_size * self.vae_scale_factor
    width = width or self.transformer.config.sample_size * self.vae_scale_factor
    if use_resolution_binning:
        if self.transformer.config.sample_size == 32:
            aspect_ratio_bin = ASPECT_RATIO_256_BIN
        elif self.transformer.config.sample_size == 64:
            aspect_ratio_bin = ASPECT_RATIO_512_BIN
        elif self.transformer.config.sample_size == 128:
            aspect_ratio_bin = ASPECT_RATIO_1024_BIN
        elif self.transformer.config.sample_size == 256:
            aspect_ratio_bin = ASPECT_RATIO_2048_BIN
        else:
            raise ValueError("Invalid sample size")
        orig_height, orig_width = height, width
        height, width = self.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)

    self.check_inputs(
        prompt,
        height,
        width,
        negative_prompt,
        callback_steps,
        prompt_embeds,
        negative_prompt_embeds,
        prompt_attention_mask,
        negative_prompt_attention_mask,
    )

    # 2. Default height and width to transformer
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    device = self._execution_device

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    do_classifier_free_guidance = guidance_scale > 1.0

    # 3. Encode input prompt
    (
        prompt_embeds,
        prompt_attention_mask,
        negative_prompt_embeds,
        negative_prompt_attention_mask,
    ) = self.encode_prompt(
        prompt,
        do_classifier_free_guidance,
        negative_prompt=negative_prompt,
        num_images_per_prompt=num_images_per_prompt,
        device=device,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        prompt_attention_mask=prompt_attention_mask,
        negative_prompt_attention_mask=negative_prompt_attention_mask,
        clean_caption=clean_caption,
        max_sequence_length=max_sequence_length,
    )
    if do_classifier_free_guidance:
        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
        prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)

    # 4. Prepare timesteps
    timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)

    # 5. Prepare latents.
    latent_channels = self.transformer.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        latent_channels,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )

    # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 6.1 Prepare micro-conditions.
    added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
    if self.transformer.config.sample_size == 128:
        resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1)
        aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1)
        resolution = resolution.to(dtype=prompt_embeds.dtype, device=device)
        aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device)

        if do_classifier_free_guidance:
            resolution = torch.cat([resolution, resolution], dim=0)
            aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0)

        added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio}

    # 7. Denoising loop
    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)

    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            current_timestep = t
            if not torch.is_tensor(current_timestep):
                # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
                # This would be a good case for the `match` statement (Python 3.10+)
                is_mps = latent_model_input.device.type == "mps"
                if isinstance(current_timestep, float):
                    dtype = torch.float32 if is_mps else torch.float64
                else:
                    dtype = torch.int32 if is_mps else torch.int64
                current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
            elif len(current_timestep.shape) == 0:
                current_timestep = current_timestep[None].to(latent_model_input.device)
            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            current_timestep = current_timestep.expand(latent_model_input.shape[0])

            # predict noise model_output
            noise_pred = self.transformer(
                latent_model_input,
                encoder_hidden_states=prompt_embeds,
                encoder_attention_mask=prompt_attention_mask,
                timestep=current_timestep,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # learned sigma
            if self.transformer.config.out_channels // 2 == latent_channels:
                noise_pred = noise_pred.chunk(2, dim=1)[0]
            else:
                noise_pred = noise_pred

            # compute previous image: x_t -> x_t-1
            if num_inference_steps == 1:
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample
            else:
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, latents)

    if not output_type == "latent":
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        if use_resolution_binning:
            image = self.resize_and_crop_tensor(image, orig_width, orig_height)
    else:
        image = latents

    if not output_type == "latent":
        image = self.image_processor.postprocess(image, output_type=output_type)

    # Offload all models
    self.maybe_free_model_hooks()

    if not return_dict:
        return (image,)

    return ImagePipelineOutput(images=image)


class PixArtSigmaPipeline(PixArtAlphaPipeline):
    r"""
    tmp Pipeline for text-to-image generation using PixArt-Sigma.
    """

    def __init__(
            self,
            tokenizer: T5Tokenizer,
            text_encoder: T5EncoderModel,
            vae: AutoencoderKL,
            transformer: Transformer2DModel,
            scheduler: DPMSolverMultistepScheduler,
    ):
        super().__init__(tokenizer, text_encoder, vae, transformer, scheduler)

        self.register_modules(
            tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
        )

        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)


def pixart_sigma_init_patched_inputs(self, norm_type):
    assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size"

    self.height = self.config.sample_size
    self.width = self.config.sample_size

    self.patch_size = self.config.patch_size
    interpolation_scale = (
        self.config.interpolation_scale
        if self.config.interpolation_scale is not None
        else max(self.config.sample_size // 64, 1)
    )
    self.pos_embed = PatchEmbed(
        height=self.config.sample_size,
        width=self.config.sample_size,
        patch_size=self.config.patch_size,
        in_channels=self.in_channels,
        embed_dim=self.inner_dim,
        interpolation_scale=interpolation_scale,
    )

    self.transformer_blocks = nn.ModuleList(
        [
            BasicTransformerBlock(
                self.inner_dim,
                self.config.num_attention_heads,
                self.config.attention_head_dim,
                dropout=self.config.dropout,
                cross_attention_dim=self.config.cross_attention_dim,
                activation_fn=self.config.activation_fn,
                num_embeds_ada_norm=self.config.num_embeds_ada_norm,
                attention_bias=self.config.attention_bias,
                only_cross_attention=self.config.only_cross_attention,
                double_self_attention=self.config.double_self_attention,
                upcast_attention=self.config.upcast_attention,
                norm_type=norm_type,
                norm_elementwise_affine=self.config.norm_elementwise_affine,
                norm_eps=self.config.norm_eps,
                attention_type=self.config.attention_type,
            )
            for _ in range(self.config.num_layers)
        ]
    )

    if self.config.norm_type != "ada_norm_single":
        self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
        self.proj_out_2 = nn.Linear(
            self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
        )
    elif self.config.norm_type == "ada_norm_single":
        self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim ** 0.5)
        self.proj_out = nn.Linear(
            self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
        )

    # PixArt-Sigma blocks.
    self.adaln_single = None
    self.use_additional_conditions = False
    if self.config.norm_type == "ada_norm_single":
        # TODO(Sayak, PVP) clean this, PixArt-Sigma doesn't use additional_conditions anymore
        # additional conditions until we find better name
        self.adaln_single = AdaLayerNormSingle(
            self.inner_dim, use_additional_conditions=self.use_additional_conditions
        )

    self.caption_projection = None
    if self.caption_channels is not None:
        self.caption_projection = PixArtAlphaTextProjection(
            in_features=self.caption_channels, hidden_size=self.inner_dim
        )