File size: 14,008 Bytes
5b7e52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afbd57f
5b7e52a
 
 
 
 
 
 
 
 
 
 
 
 
 
190a2a3
 
89517ee
9fc50d2
5b7e52a
 
 
 
 
190a2a3
 
afbd57f
9fc50d2
5b7e52a
 
 
9fc50d2
afbd57f
5b7e52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afbd57f
 
 
5b7e52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afbd57f
5b7e52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae3461
 
 
 
 
 
5b7e52a
 
 
 
 
 
 
 
 
 
89517ee
5b7e52a
 
3b5e341
fc1e245
3b5e341
 
5b7e52a
 
 
 
 
 
 
 
1c2f511
84f4ef4
38536e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# -*- coding: utf-8 -*-
import os
import time
from collections import OrderedDict
from PIL import Image
import torch
import trimesh
from typing import Optional, List
from einops import repeat, rearrange
import numpy as np
from michelangelo.models.tsal.tsal_base import Latent2MeshOutput
from michelangelo.utils.misc import get_config_from_file, instantiate_from_config
from michelangelo.utils.visualizers.pythreejs_viewer import PyThreeJSViewer
from michelangelo.utils.visualizers import html_util

import gradio as gr

from huggingface_hub import snapshot_download

gradio_cached_dir = "./gradio_cached_dir"
os.makedirs(gradio_cached_dir, exist_ok=True)

save_mesh = False

state = ""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

box_v = 1.1
viewer = PyThreeJSViewer(settings={}, render_mode="WEBSITE")

image_model_config_dict = OrderedDict({
    "ASLDM-256-obj": {
        # "config": "./configs/image_cond_diffuser_asl/image-ASLDM-256.yaml",
        # "ckpt_path": "./checkpoints/image_cond_diffuser_asl/image-ASLDM-256.ckpt",
        "config": "/home/user/app/configs/image_cond_diffuser_asl/image-ASLDM-256.yaml",
        "ckpt_path": "checkpoints/image_cond_diffuser_asl/image-ASLDM-256.ckpt",
    },
})

text_model_config_dict = OrderedDict({
    "ASLDM-256": {
        # "config": "./configs/text_cond_diffuser_asl/text-ASLDM-256.yaml",
        # "ckpt_path": "./checkpoints/text_cond_diffuser_asl/text-ASLDM-256.ckpt",
        "config": "./configs/text_cond_diffuser_asl/text-ASLDM-256.yaml",
        "ckpt_path": "checkpoints/text_cond_diffuser_asl/text-ASLDM-256.ckpt",
    },
})

model_path = snapshot_download(repo_id="Maikou/Michelangelo")

class InferenceModel(object):
    model = None
    name = ""


text2mesh_model = InferenceModel()
image2mesh_model = InferenceModel()


def set_state(s):
    global state
    state = s
    print(s)


def output_to_html_frame(mesh_outputs: List[Latent2MeshOutput], bbox_size: float,
                         image: Optional[np.ndarray] = None,
                         html_frame: bool = False):
    global viewer

    for i in range(len(mesh_outputs)):
        mesh = mesh_outputs[i]
        if mesh is None:
            continue

        mesh_v = mesh.mesh_v.copy()
        mesh_v[:, 0] += i * np.max(bbox_size)
        mesh_v[:, 2] += np.max(bbox_size)
        viewer.add_mesh(mesh_v, mesh.mesh_f)

    mesh_tag = viewer.to_html(html_frame=False)

    if image is not None:
        image_tag = html_util.to_image_embed_tag(image)
        frame = f"""
        <table border = "1">
            <tr>
                <td>{image_tag}</td>
                <td>{mesh_tag}</td>
            </tr>
        </table>
        """
    else:
        frame = mesh_tag

    if html_frame:
        frame = html_util.to_html_frame(frame)

    viewer.reset()

    return frame


def load_model(model_name: str, model_config_dict: dict, inference_model: InferenceModel):
    global device

    if inference_model.name == model_name:
        model = inference_model.model
    else:
        assert model_name in model_config_dict

        if inference_model.model is not None:
            del inference_model.model

        config_ckpt_path = model_config_dict[model_name]

        model_config = get_config_from_file(config_ckpt_path["config"])
        if hasattr(model_config, "model"):
            model_config = model_config.model

        ckpt_path = os.path.join(model_path, config_ckpt_path["ckpt_path"])

        model = instantiate_from_config(model_config, ckpt_path=ckpt_path)
        model = model.to(device)
        model = model.eval()

        inference_model.model = model
        inference_model.name = model_name

    return model


def prepare_img(image: np.ndarray):
    image_pt = torch.tensor(image).float()
    image_pt = image_pt / 255 * 2 - 1
    image_pt = rearrange(image_pt, "h w c -> c h w")

    return image_pt

def prepare_model_viewer(fp):
    content = f"""
      <head>
        <script 
          type="module" src="https://ajax.googleapis.com/ajax/libs/model-viewer/3.1.1/model-viewer.min.js">
        </script>
      </head>
      <body>
        <model-viewer 
          style="height: 150px; width: 150px;"
          rotation-per-second="10deg"
          id="t1"
          src="file/gradio_cached_dir/{fp}" 
          environment-image="neutral" 
          camera-target="0m 0m 0m"
          orientation="0deg 90deg 170deg"
          shadow-intensity="1"
          ar:true 
          auto-rotate 
          camera-controls>
        </model-viewer>
      </body>
    """
    return content

def prepare_html_frame(content):
    frame = f"""
    <html>
      <body>
        {content}
      </body>
    </html>
    """
    return frame

def prepare_html_body(content):
    frame = f"""
      <body>
        {content}
      </body>
    """
    return frame

def post_process_mesh_outputs(mesh_outputs):
    # html_frame = output_to_html_frame(mesh_outputs, 2 * box_v, image=None, html_frame=True)
    html_content = output_to_html_frame(mesh_outputs, 2 * box_v, image=None, html_frame=False)
    html_frame = prepare_html_frame(html_content)

    # filename = f"{time.time()}.html"
    filename = f"text-256-{time.time()}.html"
    html_filepath = os.path.join(gradio_cached_dir, filename)
    with open(html_filepath, "w") as writer:
        writer.write(html_frame)

    '''
    Bug: The iframe tag does not work in Gradio.
         The chrome returns "No resource with given URL found" 
    Solutions:
         https://github.com/gradio-app/gradio/issues/884
         Due to the security bitches, the server can only find files parallel to the gradio_app.py.
         The path has format "file/TARGET_FILE_PATH"
    '''

    iframe_tag = f'<iframe src="file/gradio_cached_dir/{filename}" width="600%" height="400" frameborder="0"></iframe>'

    filelist = []
    filenames = []
    for i, mesh in enumerate(mesh_outputs):
        mesh.mesh_f = mesh.mesh_f[:, ::-1]
        mesh_output = trimesh.Trimesh(mesh.mesh_v, mesh.mesh_f)

        name = str(i) + "_out_mesh.obj"
        filepath = gradio_cached_dir + "/" + name
        mesh_output.export(filepath, include_normals=True)
        filelist.append(filepath)
        filenames.append(name)

    filelist.append(html_filepath)
    return iframe_tag, filelist

def image2mesh(image: np.ndarray,
               model_name: str = "subsp+pk_asl_perceiver=01_01_udt=03",
               num_samples: int = 4,
               guidance_scale: int = 7.5,
               octree_depth: int = 7):
    global device, gradio_cached_dir, image_model_config_dict, box_v

    # load model
    model = load_model(model_name, image_model_config_dict, image2mesh_model)

    # prepare image inputs
    image_pt = prepare_img(image)
    image_pt = repeat(image_pt, "c h w -> b c h w", b=num_samples)

    sample_inputs = {
        "image": image_pt
    }
    mesh_outputs = model.sample(
        sample_inputs,
        sample_times=1,
        guidance_scale=guidance_scale,
        return_intermediates=False,
        bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
        octree_depth=octree_depth,
    )[0]

    iframe_tag, filelist = post_process_mesh_outputs(mesh_outputs)

    return iframe_tag, gr.update(value=filelist, visible=True)


def text2mesh(text: str,
              model_name: str = "subsp+pk_asl_perceiver=01_01_udt=03",
              num_samples: int = 4,
              guidance_scale: int = 7.5,
              octree_depth: int = 7):
    global device, gradio_cached_dir, text_model_config_dict, text2mesh_model, box_v

    # load model
    model = load_model(model_name, text_model_config_dict, text2mesh_model)

    # prepare text inputs
    sample_inputs = {
        "text": [text] * num_samples
    }
    mesh_outputs = model.sample(
        sample_inputs,
        sample_times=1,
        guidance_scale=guidance_scale,
        return_intermediates=False,
        bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
        octree_depth=octree_depth,
    )[0]

    iframe_tag, filelist = post_process_mesh_outputs(mesh_outputs)

    return iframe_tag, gr.update(value=filelist, visible=True)

example_dir = './gradio_cached_dir/example/img_example'

first_page_items = [
    'alita.jpg',
    'burger.jpg'
    'loopy.jpg'
    'building.jpg',
    'mario.jpg',
    'car.jpg',
    'airplane.jpg',
    'bag.jpg',
    'bench.jpg',
    'ship.jpg'
]
raw_example_items = [
    # (os.path.join(example_dir, x), x)
    os.path.join(example_dir, x)
    for x in os.listdir(example_dir)
    if x.endswith(('.jpg', '.png'))
]
example_items = [x for x in raw_example_items if os.path.basename(x) in first_page_items] + [x for x in raw_example_items if os.path.basename(x) not in first_page_items]

example_text = [
    ["A 3D model of a car; Audi A6."],
    ["A 3D model of police car; Highway Patrol Charger"]
    ],

def set_cache(data: gr.SelectData):
    img_name = os.path.basename(example_items[data.index])
    return os.path.join(example_dir, img_name), os.path.join(img_name)

def disable_cache():
    return ""

with gr.Blocks() as app:
    gr.Markdown("# Michelangelo")
    gr.Markdown("## [Github](https://github.com/NeuralCarver/Michelangelo) | [Arxiv](https://arxiv.org/abs/2306.17115) | [Project Page](https://neuralcarver.github.io/michelangelo/)")
    gr.Markdown("Michelangelo is a conditional 3D shape generation system that trains based on the shape-image-text aligned latent representation.")
    gr.Markdown("### Hint:")
    gr.Markdown("1. We provide two APIs: Image-conditioned generation and Text-conditioned generation")
    gr.Markdown("2. Note that the Image-conditioned model is trained on multiple 3D datasets like ShapeNet and Objaverse")
    gr.Markdown("3. We provide some examples for you to try. You can also upload images or text as input.")
    gr.Markdown("4. Welcome to share your amazing results with us, and thanks for your interest in our work!")
    
    with gr.Row():
        with gr.Column():
            
            with gr.Tab("Image to 3D"):
                img = gr.Image(label="Image")
                gr.Markdown("For the best results, we suggest that the images uploaded meet the following three criteria: 1. The object is positioned at the center of the image, 2. The image size is square, and 3. The background is relatively clean.")
                btn_generate_img2obj = gr.Button(value="Generate")
                
                with gr.Accordion("Advanced settings", open=False):
                    image_dropdown_models = gr.Dropdown(label="Model", value="ASLDM-256-obj",choices=list(image_model_config_dict.keys()))
                    num_samples = gr.Slider(label="samples", value=4, minimum=1, maximum=8, step=1)
                    guidance_scale = gr.Slider(label="Guidance scale", value=7.5, minimum=3.0, maximum=10.0, step=0.1)
                    octree_depth = gr.Slider(label="Octree Depth (for 3D model)", value=7, minimum=4, maximum=8, step=1)

                
                cache_dir = gr.Textbox(value="", visible=False)
                examples = gr.Gallery(label='Examples', value=example_items, elem_id="gallery", allow_preview=False, columns=[4], object_fit="contain")
            
            with gr.Tab("Text to 3D"):
                prompt = gr.Textbox(label="Prompt", placeholder="A 3D model of motorcar; Porche Cayenne Turbo.")
                gr.Markdown("For the best results, we suggest that the prompt follows 'A 3D model of CATEGORY; DESCRIPTION'. For example, A 3D model of motorcar; Porche Cayenne Turbo.")
                btn_generate_txt2obj = gr.Button(value="Generate")
                
                with gr.Accordion("Advanced settings", open=False):
                    text_dropdown_models = gr.Dropdown(label="Model", value="ASLDM-256",choices=list(text_model_config_dict.keys()))
                    num_samples = gr.Slider(label="samples", value=4, minimum=1, maximum=8, step=1)
                    guidance_scale = gr.Slider(label="Guidance scale", value=7.5, minimum=3.0, maximum=10.0, step=0.1)
                    octree_depth = gr.Slider(label="Octree Depth (for 3D model)", value=7, minimum=4, maximum=8, step=1)

                gr.Markdown("#### Examples:")
                gr.Markdown("1. A 3D model of an airplane; Airbus.")
                gr.Markdown("2. A 3D model of a fighter aircraft; Attack Fighter.")
                gr.Markdown("3. A 3D model of a chair; Simple Wooden Chair.")
                gr.Markdown("4. A 3D model of a laptop computer; Dell Laptop.")
                gr.Markdown("5. A 3D model of a coupe; Audi A6.")
                gr.Markdown("6. A 3D model of a motorcar; Hummer H2 SUT.")
                gr.Markdown("7. A 3D model of a lamp; ceiling light.")
                gr.Markdown("8. A 3D model of a rifle; AK47.")
                gr.Markdown("9. A 3D model of a knife; Sword.")
                gr.Markdown("10. A 3D model of a vase; Plant in pot.")

        with gr.Column():
            model_3d = gr.HTML()
            file_out = gr.File(label="Files", visible=False)

        outputs = [model_3d, file_out]
           
        img.upload(disable_cache, outputs=cache_dir)
        examples.select(set_cache, outputs=[img, cache_dir])
        print(os.path.abspath(os.path.dirname(__file__)), flush=True)
        model_path = snapshot_download(repo_id="Maikou/Michelangelo")
        print(model_path, flush=True)
        print(f'line:404: {cache_dir}', flush=True)
        btn_generate_img2obj.click(image2mesh, inputs=[img, image_dropdown_models, num_samples,
                                                       guidance_scale, octree_depth],
                                   outputs=outputs, api_name="generate_img2obj")

        btn_generate_txt2obj.click(text2mesh, inputs=[prompt, text_dropdown_models, num_samples,
                                                      guidance_scale, octree_depth],
                                   outputs=outputs, api_name="generate_txt2obj")



app.launch()