File size: 22,808 Bytes
82c899e
 
 
 
 
 
 
 
 
 
 
 
 
3a12729
82c899e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a12729
 
 
 
 
 
 
82c899e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a12729
82c899e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.ticker as mticker
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import cartopy.io.shapereader as shpreader
from adjustText import adjust_text
from .interpolation import interpolate_grid
from .basemaps import draw_etopo_basemap
import imageio.v2 as imageio
import shutil
import tempfile

class Plot_3DField_Data:
    
    """
    A class for visualizing 3D spatiotemporal field data (e.g., ash concentration) across time and altitude levels.

    This class uses matplotlib and cartopy to create:
      - Animated GIFs of spatial fields at given altitudes
      - Vertical profile animations over time
      - Exported static frames with metadata annotations and zoomed views

    Parameters
    ----------
    animator : object
        A container holding the dataset, including:
        - datasets: list of xarray-like DataArrays with 'ash_concentration'
        - lons, lats: 1D longitude and latitude arrays
        - lat_grid, lon_grid: 2D grid arrays for spatial mapping
        - levels: 1D array of vertical altitude levels (e.g., in km)
    output_dir : str
        Base directory for saving all outputs. Defaults to "plots".
    cmap : str
        Matplotlib colormap name. Defaults to "rainbow".
    fps : int
        Frames per second for GIFs. Defaults to 2.
    include_metadata : bool
        Whether to annotate each figure with simulation metadata. Defaults to True.
    threshold : float
        Value threshold (e.g., in g/m³) to highlight exceedances. Defaults to 0.1.
    zoom_width_deg : float
        Width of the zoomed-in region in degrees. Defaults to 6.0.
    zoom_height_deg : float
        Height of the zoomed-in region in degrees. Defaults to 6.0.
    zoom_level : int
        Zoom level passed to basemap drawing. Defaults to 7.
    basemap_type : str
        Type of basemap to draw (passed to draw_etopo_basemap). Defaults to "basemap".

    Methods
    -------
    plot_single_z_level(z_km, filename)
        Generate animation over time at a specific altitude level.
    
    plot_vertical_profile_at_time(t_index, filename=None)
        Generate vertical profile GIF for a single timestep.

    animate_altitude(t_index, output_path)
        Animate altitude slices for one timestep.

    animate_all_altitude_profiles(output_folder='altitude_profiles')
        Generate vertical animations for all time steps.

    export_frames_as_jpgs(include_metadata=True)
        Export individual frames as static `.jpg` images with annotations.
    """
    def __init__(self, animator, output_dir="plots", cmap="rainbow", fps=2,
                 include_metadata=True, threshold=0.1,
                 zoom_width_deg=6.0, zoom_height_deg=6.0, zoom_level=7, basemap_type="basemap"):
        self.animator = animator
        
        self.output_dir = os.path.abspath(
            os.path.join(
                os.environ.get("NAME_OUTPUT_DIR", tempfile.gettempdir()),
                output_dir
            )
        )
        os.makedirs(self.output_dir, exist_ok=True)
        self.cmap = cmap
        self.fps = fps
        self.include_metadata = include_metadata
        self.threshold = threshold
        self.zoom_width = zoom_width_deg
        self.zoom_height = zoom_height_deg
        shp = shpreader.natural_earth(resolution='110m', category='cultural', name='admin_0_countries')
        self.country_geoms = list(shpreader.Reader(shp).records())
        self.zoom_level=zoom_level
        self.basemap_type=basemap_type
        
        #############3
        
            
        # Load shapefile once
        countries_shp = shpreader.natural_earth(
            resolution='110m',
            category='cultural',
            name='admin_0_countries'
        )
        self.country_geoms = list(shpreader.Reader(countries_shp).records())

        # Cache extent bounds
        self.lon_min = np.min(self.animator.lons)
        self.lon_max = np.max(self.animator.lons)
        self.lat_min = np.min(self.animator.lats)
        self.lat_max = np.max(self.animator.lats)
        
        #####################3
        
    def _make_dirs(self, path):
        path = os.path.abspath(os.path.join(os.getcwd(), os.path.dirname(path)))
        os.makedirs(path, exist_ok=True)

    def _get_zoom_indices(self, center_lat, center_lon):
        lon_min = center_lon - self.zoom_width / 2
        lon_max = center_lon + self.zoom_width / 2
        lat_min = center_lat - self.zoom_height / 2
        lat_max = center_lat + self.zoom_height / 2
        lat_idx = np.where((self.animator.lats >= lat_min) & (self.animator.lats <= lat_max))[0]
        lon_idx = np.where((self.animator.lons >= lon_min) & (self.animator.lons <= lon_max))[0]
        return lat_idx, lon_idx, lon_min, lon_max, lat_min, lat_max

    def _get_max_concentration_location(self):
        max_conc = -np.inf
        center_lat = center_lon = None
        for ds in self.animator.datasets:
            for z in range(len(self.animator.levels)):
                data = ds['ash_concentration'].values[z]
                if np.max(data) > max_conc:
                    max_conc = np.max(data)
                    max_idx = np.unravel_index(np.argmax(data), data.shape)
                    center_lat = self.animator.lat_grid[max_idx]
                    center_lon = self.animator.lon_grid[max_idx]
        return center_lat, center_lon

    def _add_country_labels(self, ax, extent):
        proj = ccrs.PlateCarree()
        texts = []
        for country in self.country_geoms:
            name = country.attributes['NAME_LONG']
            geom = country.geometry
            try:
                lon, lat = geom.centroid.x, geom.centroid.y
                if extent[0] <= lon <= extent[1] and extent[2] <= lat <= extent[3]:
                    text = ax.text(lon, lat, name, fontsize=6, transform=proj,
                                   ha='center', va='center', color='white',
                                   bbox=dict(facecolor='black', alpha=0.5, linewidth=0))
                    texts.append(text)
            except:
                continue
        adjust_text(texts, ax=ax, only_move={'points': 'y', 'text': 'y'},
                    arrowprops=dict(arrowstyle="->", color='white', lw=0.5))

    def _plot_frame(self, ax, data, lons, lats, title, levels, scale_label, proj):
        draw_etopo_basemap(ax, mode=self.basemap_type, zoom=self.zoom_level)
        c = ax.contourf(lons, lats, data, levels=levels, cmap=self.cmap, alpha=0.6, transform=proj)
        ax.contour(lons, lats, data, levels=levels, colors='black', linewidths=0.5, transform=proj)
        ax.set_title(title)
        ax.set_extent([lons.min(), lons.max(), lats.min(), lats.max()])
        ax.coastlines()
        ax.add_feature(cfeature.BORDERS, linestyle=':')
        ax.add_feature(cfeature.LAND)
        ax.add_feature(cfeature.OCEAN)
        return c

 

#  metadata placement function and usage

    def _draw_metadata_sidebar(self, fig, meta_dict):
        lines = [
        f"Run name:        {meta_dict.get('run_name', 'N/A')}",
        f"Run time:        {meta_dict.get('run_time', 'N/A')}",
        f"Met data:        {meta_dict.get('met_data', 'N/A')}",
        f"Start release:   {meta_dict.get('start_of_release', 'N/A')}",
        f"End release:     {meta_dict.get('end_of_release', 'N/A')}",
        f"Source strength: {meta_dict.get('source_strength', 'N/A')} g/s",
        f"Release loc:     {meta_dict.get('release_location', 'N/A')}",
        f"Release height:  {meta_dict.get('release_height', 'N/A')} m asl",
        f"Run duration:    {meta_dict.get('run_duration', 'N/A')}"
    ]
        full_text = "\n".join(lines)  # ✅ actual newlines
        fig.text(0.1, 0.095, full_text, va='center', ha='left',
                fontsize=9, family='monospace', color='black',
                bbox=dict(facecolor='white', alpha=0.8, edgecolor='gray'))



    def plot_single_z_level(self, z_km, filename="z_level.gif"):
       
        if z_km not in self.animator.levels:
            print(f"Z level {z_km} km not found.")
            return
        z_index = np.where(self.animator.levels == z_km)[0][0]
        output_path = os.path.join(self.output_dir, "z_levels", filename)
        fig = plt.figure(figsize=(16, 8))
        proj = ccrs.PlateCarree()
        ax1 = fig.add_subplot(1, 2, 1, projection=proj)
        ax2 = fig.add_subplot(1, 2, 2, projection=proj)

        center_lat, center_lon = self._get_max_concentration_location()
        lat_idx, lon_idx, lon_min, lon_max, lat_min, lat_max = self._get_zoom_indices(center_lat, center_lon)
        lat_zoom = self.animator.lats[lat_idx]
        lon_zoom = self.animator.lons[lon_idx]
        lon_zoom_grid, lat_zoom_grid = np.meshgrid(lon_zoom, lat_zoom)
        
       

        meta = self.animator.datasets[0].attrs
        valid_frames = []
        for t in range(len(self.animator.datasets)):
            interp = interpolate_grid(self.animator.datasets[t]['ash_concentration'].values[z_index],
                                      self.animator.lon_grid, self.animator.lat_grid)
            if np.isfinite(interp).sum() > 0:
                valid_frames.append(t)
        if not valid_frames:
            print(f"No valid frames for Z={z_km} km.")
            plt.close()
            return

        def update(t):
            ax1.clear()
            ax2.clear()

            data = self.animator.datasets[t]['ash_concentration'].values[z_index]
            interp = interpolate_grid(data, self.animator.lon_grid, self.animator.lat_grid)
            interp = np.where(interp < 0, np.nan, interp)
            zoom_plot = interp[np.ix_(lat_idx, lon_idx)]

            valid_vals = interp[np.isfinite(interp)]
            if valid_vals.size == 0:
                return []

            min_val, max_val = np.nanmin(valid_vals), np.nanmax(valid_vals)
            log_cutoff = 1e-3
            use_log = min_val > log_cutoff and (max_val / (min_val + 1e-6)) > 100

            levels = (
                np.logspace(np.log10(log_cutoff), np.log10(max_val), 20)
                if use_log else
                np.linspace(0, max_val, 20)
            )
            data_for_plot = np.where(interp > log_cutoff, interp, np.nan) if use_log else interp
            scale_label = "Log" if use_log else "Linear"

            c = self._plot_frame(ax1, data_for_plot, self.animator.lons, self.animator.lats,
                                f"T{t+1} | Alt: {z_km} km (Full - {scale_label})", levels, scale_label, proj)
            self._plot_frame(ax2, zoom_plot, lon_zoom, lat_zoom,
                            f"T{t} | Alt: {z_km} km (Zoom - {scale_label})", levels, scale_label, proj)

            self._add_country_labels(ax1, [self.animator.lons.min(), self.animator.lons.max(),
                                        self.animator.lats.min(), self.animator.lats.max()])
            self._add_country_labels(ax2, [lon_min, lon_max, lat_min, lat_max])

            if not hasattr(update, "colorbar"):
                update.colorbar = fig.colorbar(c, ax=[ax1, ax2], orientation='vertical',
                                            label="Ash concentration (g/m³)")
                formatter = mticker.FuncFormatter(lambda x, _: f'{x:.2g}')
                update.colorbar.ax.yaxis.set_major_formatter(formatter)

            # ✅ Draw threshold outline and label only if exceeded
            if np.nanmax(valid_vals) > self.threshold:
                ax1.contour(self.animator.lons, self.animator.lats, interp, levels=[self.threshold],
                            colors='red', linewidths=2, transform=proj)
                ax2.contour(lon_zoom, lat_zoom, zoom_plot, levels=[self.threshold],
                            colors='red', linewidths=2, transform=proj)
                ax2.text(0.99, 0.01, f"⚠ Max Thresold Exceed: {np.nanmax(valid_vals):.2f} > {self.threshold} g/m³",
                        transform=ax2.transAxes, ha='right', va='bottom',
                        fontsize=9, color='red',
                        bbox=dict(facecolor='white', alpha=0.8, edgecolor='red'))

            return []

  


        self._draw_metadata_sidebar(fig, meta)
        self._make_dirs(output_path)
        fig.tight_layout()
        ani = animation.FuncAnimation(fig, update, frames=valid_frames, blit=False, cache_frame_data =False)
        ani.save(output_path, writer='pillow', fps=self.fps, dpi=300)
        plt.close()
        print(f"✅ Saved Z-level animation to {output_path}")

    def plot_vertical_profile_at_time(self, t_index, filename=None):
        time_label = f"T{t_index+1}"
        for z_index, z_val in enumerate(self.animator.levels):
            filename = f"TimeSlices_Z{z_val:.1f}km.gif"
            self.plot_single_z_level(z_val, filename=os.path.join("vertical_profiles_timeSlice", filename))

    
    ################################################
    
    
    
    def animate_altitude(self, t_index: int, output_path: str):
        if not (0 <= t_index < len(self.animator.datasets)):
            print(f"Invalid time index {t_index}. Must be between 0 and {len(self.animator.datasets) - 1}.")
        

        ds = self.animator.datasets[t_index]
        fig = plt.figure(figsize=(18, 7))
        proj = ccrs.PlateCarree()
        ax1 = fig.add_subplot(1, 2, 1, projection=proj)
        ax2 = fig.add_subplot(1, 2, 2, projection=proj)

        meta = ds.attrs
        center_lat, center_lon = self._get_max_concentration_location()
        if center_lat is None or center_lon is None:
            print(f"No valid data found for time T{t_index + 1}. Skipping...")
            plt.close()
            return

        lat_idx, lon_idx, lon_min, lon_max, lat_min, lat_max = self._get_zoom_indices(center_lat, center_lon)
        lat_zoom = self.animator.lats[lat_idx]
        lon_zoom = self.animator.lons[lon_idx]
        lon_zoom_grid, lat_zoom_grid = np.meshgrid(lon_zoom, lat_zoom)

        z_indices_with_data = []
        for z_index in range(len(self.animator.levels)):
            data = ds['ash_concentration'].values[z_index]
            interp = interpolate_grid(data, self.animator.lon_grid, self.animator.lat_grid)
            if np.isfinite(interp).sum() > 0:
                z_indices_with_data.append(z_index)

        if not z_indices_with_data:
            print(f"No valid Z-levels at time T{t_index + 1}.")
            plt.close()
            return

        def update(z_index):
            ax1.clear()
            ax2.clear()

            data = ds['ash_concentration'].values[z_index]
            interp = interpolate_grid(data, self.animator.lon_grid, self.animator.lat_grid)
            interp = np.where(interp < 0, np.nan, interp)
            zoom_plot = interp[np.ix_(lat_idx, lon_idx)]

            valid_vals = interp[np.isfinite(interp)]
            if valid_vals.size == 0:
                return []

            min_val, max_val = np.nanmin(valid_vals), np.nanmax(valid_vals)
            log_cutoff = 1e-3
            use_log = min_val > log_cutoff and (max_val / (min_val + 1e-6)) > 100

            levels = np.logspace(np.log10(log_cutoff), np.log10(max_val), 20) if use_log else np.linspace(0, max_val, 20)
            data_for_plot = np.where(interp > log_cutoff, interp, np.nan) if use_log else interp
            scale_label = "Log" if use_log else "Linear"

            title1 = f"T{t_index + 1} | Alt: {self.animator.levels[z_index]} km (Full - {scale_label})"
            title2 = f"T{t_index + 1} | Alt: {self.animator.levels[z_index]} km (Zoom - {scale_label})"

            c1 = self._plot_frame(ax1, data_for_plot, self.animator.lons, self.animator.lats, title1, levels, scale_label, proj)
            self._plot_frame(ax2, zoom_plot, lon_zoom, lat_zoom, title2, levels, scale_label, proj)

            self._add_country_labels(ax1, [self.lon_min, self.lon_max, self.lat_min, self.lat_max])
            self._add_country_labels(ax2, [lon_min, lon_max, lat_min, lat_max])

            if self.include_metadata:
                self._draw_metadata_sidebar(fig, meta)

            if not hasattr(update, "colorbar"):
                update.colorbar = fig.colorbar(c1, ax=[ax1, ax2], orientation='vertical',
                                                label="Ash concentration (g/m³)", shrink=0.75)
                formatter = mticker.FuncFormatter(lambda x, _: f'{x:.2g}')
                update.colorbar.ax.yaxis.set_major_formatter(formatter)

            if np.nanmax(valid_vals) > self.threshold:
                ax1.contour(self.animator.lons, self.animator.lats, interp, levels=[self.threshold],
                            colors='red', linewidths=2, transform=proj)
                ax2.contour(lon_zoom, lat_zoom, zoom_plot, levels=[self.threshold],
                            colors='red', linewidths=2, transform=proj)

            
                ax2.text(0.99, 0.01, f"⚠ Max Thresold Exceed: {np.nanmax(valid_vals):.2f} > {self.threshold} g/m³",
                            transform=ax2.transAxes, ha='right', va='bottom',
                            fontsize=9, color='red',
                            bbox=dict(facecolor='white', alpha=0.8, edgecolor='red'))
            return []

        os.makedirs(os.path.dirname(output_path), exist_ok=True)
        #fig.set_size_inches(18, 7)
        fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.98])
        ani = animation.FuncAnimation(fig, update, frames=z_indices_with_data, blit=False, cache_frame_data =False)
        ani.save(output_path, writer='pillow', fps=self.fps, dpi=300)
        plt.close()
        print(f"✅ Saved vertical profile animation for T{t_index + 1} to {output_path}")



    def animate_all_altitude_profiles(self, output_folder='altitude_profiles'):
        output_folder = os.path.join(self.output_dir, "altitude_profiles")
        os.makedirs(output_folder, exist_ok=True)
        for t_index in range(len(self.animator.datasets)):
            output_path = os.path.join(output_folder, f"vertical_T{t_index + 1:02d}.gif")
            print(f"🔄 Generating vertical profile animation for T{t_index + 1}...")
            self.animate_altitude(t_index, output_path)

            
    


    
    def export_frames_as_jpgs(self, include_metadata: bool = True):
        output_folder = os.path.join(self.output_dir, "frames")
        os.makedirs(output_folder, exist_ok=True)
        meta = self.animator.datasets[0].attrs
        legend_text = "\\n".join([
            f"Run name:        {meta.get('run_name', 'N/A')}",
            f"Run time:        {meta.get('run_time', 'N/A')}",
            f"Met data:        {meta.get('met_data', 'N/A')}",
            f"Start release:   {meta.get('start_of_release', 'N/A')}",
            f"End release:     {meta.get('end_of_release', 'N/A')}",
            f"Strength:        {meta.get('source_strength', 'N/A')} g/s",
            f"Location:        {meta.get('release_location', 'N/A')}",
            f"Height:          {meta.get('release_height', 'N/A')} m asl",
            f"Duration:        {meta.get('run_duration', 'N/A')}"
        ])
        for z_index, z_val in enumerate(self.animator.levels):
            z_dir = os.path.join(output_folder, f"Z{z_val:.1f}km")
            os.makedirs(z_dir, exist_ok=True)
            for t in range(len(self.animator.datasets)):
                data = self.animator.datasets[t]['ash_concentration'].values[z_index]
                interp = interpolate_grid(data, self.animator.lon_grid, self.animator.lat_grid)
                if not np.isfinite(interp).any():
                    continue
                fig = plt.figure(figsize=(16, 8))
                proj = ccrs.PlateCarree()
                ax1 = fig.add_subplot(1, 2, 1, projection=proj)
                ax2 = fig.add_subplot(1, 2, 2, projection=proj)
                valid_vals = interp[np.isfinite(interp)]
                min_val, max_val = np.nanmin(valid_vals), np.nanmax(valid_vals)
                log_cutoff = 1e-3
                use_log = min_val > log_cutoff and (max_val / (min_val + 1e-6)) > 100
                levels = np.logspace(np.log10(log_cutoff), np.log10(max_val), 20) if use_log else np.linspace(0, max_val, 20)
                data_for_plot = np.where(interp > log_cutoff, interp, np.nan) if use_log else interp
                scale_label = "Log" if use_log else "Linear"
                center_lat, center_lon = self._get_max_concentration_location()
                lat_idx, lon_idx, lon_min, lon_max, lat_min, lat_max = self._get_zoom_indices(center_lat, center_lon)
                zoom_plot = interp[np.ix_(lat_idx, lon_idx)]
                lon_zoom = self.animator.lons[lon_idx]
                lat_zoom = self.animator.lats[lat_idx]
                c1 = self._plot_frame(ax1, data_for_plot, self.animator.lons, self.animator.lats,
                                      f"T{t+1} | Alt: {z_val} km (Full - {scale_label})", levels, scale_label, proj)
                self._plot_frame(ax2, zoom_plot, lon_zoom, lat_zoom,
                                 f"T{t+1} | Alt: {z_val} km (Zoom - {scale_label})", levels, scale_label, proj)
                self._add_country_labels(ax1, [self.animator.lons.min(), self.animator.lons.max(),
                                               self.animator.lats.min(), self.animator.lats.max()])
                self._add_country_labels(ax2, [lon_min, lon_max, lat_min, lat_max])
                if np.nanmax(valid_vals) > self.threshold:
                    ax1.contour(self.animator.lons, self.animator.lats, interp, levels=[self.threshold],
                                colors='red', linewidths=2, transform=proj)
                    ax2.contour(lon_zoom, lat_zoom, zoom_plot, levels=[self.threshold],
                                colors='red', linewidths=2, transform=proj)
                    ax2.text(0.99, 0.01, f"⚠ Max: {np.nanmax(valid_vals):.2f} > {self.threshold} g/m³",
                             transform=ax2.transAxes, ha='right', va='bottom',
                             fontsize=9, color='red',
                             bbox=dict(facecolor='white', alpha=0.8, edgecolor='red'))
                if include_metadata:
                    self._draw_metadata_sidebar(fig, meta)
                cbar = fig.colorbar(c1, ax=[ax1, ax2], orientation='vertical', shrink=0.75, pad=0.03)
                cbar.set_label("Ash concentration (g/m³)")
                formatter = mticker.FuncFormatter(lambda x, _: f'{x:.2g}')
                cbar.ax.yaxis.set_major_formatter(formatter)
                frame_path = os.path.join(z_dir, f"frame_{t+1:04d}.jpg")
                plt.savefig(frame_path, bbox_inches='tight')
                plt.close(fig)
                print(f"📸 Saved {frame_path}")