File size: 10,470 Bytes
3a12729
82c899e
 
 
 
 
 
 
 
 
 
 
3a12729
 
82c899e
3a12729
 
 
 
 
 
 
 
82c899e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a12729
82c899e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279


# Re-defining the integrated class first
import os
import re
import zipfile
import numpy as np
import xarray as xr
from typing import List, Tuple
import shutil


import tempfile  # Added for safe temp directory usage

class NAMEDataProcessor:
    def __init__(self, output_root: str = None):
        if output_root is None:
            output_root = os.path.join(tempfile.gettempdir(), "name_outputs")
        self.output_root = output_root
        self.output_3d = os.path.join(self.output_root, "3D")
        self.output_horizontal = os.path.join(self.output_root, "horizontal")
        os.makedirs(self.output_3d, exist_ok=True)
        os.makedirs(self.output_horizontal, exist_ok=True)
        self.output_root = output_root
        self.output_3d = os.path.join(self.output_root, "3D")
        self.output_horizontal = os.path.join(self.output_root, "horizontal")
        os.makedirs(self.output_3d, exist_ok=True)
        os.makedirs(self.output_horizontal, exist_ok=True)

    def _sanitize_key(self, key: str) -> str:
        key = re.sub(r'\W+', '_', key)
        if not key[0].isalpha():
            key = f"attr_{key}"
        return key

    def _parse_metadata(self, lines: List[str]) -> dict:
        metadata = {}
        for line in lines:
            if ":" in line:
                key, value = line.split(":", 1)
                clean_key = self._sanitize_key(key.strip().lower())
                metadata[clean_key] = value.strip()

        try:
            metadata.update({
                "x_origin": float(metadata["x_grid_origin"]),
                "y_origin": float(metadata["y_grid_origin"]),
                "x_size": int(metadata["x_grid_size"]),
                "y_size": int(metadata["y_grid_size"]),
                "x_res": float(metadata["x_grid_resolution"]),
                "y_res": float(metadata["y_grid_resolution"]),
            })
        except KeyError as e:
            raise ValueError(f"Missing required metadata field: {e}")
        except ValueError as e:
            raise ValueError(f"Invalid value in metadata: {e}")

        if metadata["x_res"] == 0 or metadata["y_res"] == 0:
            raise ZeroDivisionError("Grid resolution cannot be zero.")

        return metadata

    def _get_data_lines(self, lines: List[str]) -> List[str]:
        idx = next(i for i, l in enumerate(lines) if l.strip() == "Fields:")
        return lines[idx + 1:]

    def _is_horizontal_file(self, filename: str) -> bool:
        return "HorizontalField" in filename

    def _convert_horizontal(self, filepath: str, output_filename: str) -> str:
        with open(filepath, 'r') as f:
            lines = f.readlines()

        meta = self._parse_metadata(lines)
        data_lines = self._get_data_lines(lines)

        lons = np.round(np.arange(meta["x_origin"], meta["x_origin"] + meta["x_size"] * meta["x_res"], meta["x_res"]), 6)
        lats = np.round(np.arange(meta["y_origin"], meta["y_origin"] + meta["y_size"] * meta["y_res"], meta["y_res"]), 6)

        air_conc = np.zeros((meta["y_size"], meta["x_size"]), dtype=np.float32)
        dry_depo = np.zeros((meta["y_size"], meta["x_size"]), dtype=np.float32)
        wet_depo = np.zeros((meta["y_size"], meta["x_size"]), dtype=np.float32)

        for line in data_lines:
            parts = [p.strip().strip(',') for p in line.strip().split(',') if p.strip()]
            if len(parts) >= 7 and parts[0].isdigit() and parts[1].isdigit():
                try:
                    x = int(parts[0]) - 1
                    y = int(parts[1]) - 1
                    air_val = float(parts[4])
                    dry_val = float(parts[5])
                    wet_val = float(parts[6])
                    if 0 <= x < meta["x_size"] and 0 <= y < meta["y_size"]:
                        air_conc[y, x] = air_val
                        dry_depo[y, x] = dry_val
                        wet_depo[y, x] = wet_val
                except Exception:
                    continue

        ds = xr.Dataset(
            {
                "air_concentration": (['latitude', 'longitude'], air_conc),
                "dry_deposition_rate": (['latitude', 'longitude'], dry_depo),
                "wet_deposition_rate": (['latitude', 'longitude'], wet_depo)
            },
            coords={
                "latitude": lats,
                "longitude": lons
            },
            attrs={
                "title": "Volcanic Ash Horizontal Output (Multiple Fields)",
                "source": "NAME model output processed to NetCDF (horizontal multi-field)",
                **{k: str(v) for k, v in meta.items()}
            }
        )

        ds["air_concentration"].attrs.update({
            "units": "g/m^3",
            "long_name": "Boundary Layer Average Air Concentration"
        })
        ds["dry_deposition_rate"].attrs.update({
            "units": "g/m^2/s",
            "long_name": "Dry Deposition Rate"
        })
        ds["wet_deposition_rate"].attrs.update({
            "units": "g/m^2/s",
            "long_name": "Wet Deposition Rate"
        })
        ds["latitude"].attrs["units"] = "degrees_north"
        ds["longitude"].attrs["units"] = "degrees_east"

        out_path = os.path.join(self.output_horizontal, output_filename)
        ds.to_netcdf(out_path, engine="netcdf4")

        return out_path

  
    def _convert_3d_group(self, group: List[Tuple[int, str]], output_filename: str) -> str:
        first_file_path = group[0][1]
        with open(first_file_path, 'r') as f:
            lines = f.readlines()
        meta = self._parse_metadata(lines)

        lons = np.round(np.arange(meta["x_origin"], meta["x_origin"] + meta["x_size"] * meta["x_res"], meta["x_res"]), 6)
        lats = np.round(np.arange(meta["y_origin"], meta["y_origin"] + meta["y_size"] * meta["y_res"], meta["y_res"]), 6)

        z_levels = []
        z_coords = []

        for z_idx, filepath in group:
            with open(filepath, 'r') as f:
                lines = f.readlines()
            data_lines = self._get_data_lines(lines)
            grid = np.zeros((meta["y_size"], meta["x_size"]), dtype=np.float32)

            for line in data_lines:
                parts = [p.strip().strip(',') for p in line.strip().split(',') if p.strip()]
                if len(parts) >= 5 and parts[0].isdigit() and parts[1].isdigit():
                    try:
                        x = int(parts[0]) - 1
                        y = int(parts[1]) - 1
                        val = float(parts[4])
                        if 0 <= x < meta["x_size"] and 0 <= y < meta["y_size"]:
                            grid[y, x] = val
                    except Exception:
                        continue
            z_levels.append(grid)
            z_coords.append(z_idx)

        z_cube = np.stack(z_levels, axis=0)
        ds = xr.Dataset(
            {
                "ash_concentration": (['altitude', 'latitude', 'longitude'], z_cube)
            },
            coords={
                "altitude": np.array(z_coords, dtype=np.float32),
                "latitude": lats,
                "longitude": lons
            },
            attrs={
                "title": "Volcanic Ash Concentration (3D)",
                "source": "NAME model output processed to NetCDF (3D fields)",
                **{k: str(v) for k, v in meta.items()}
            }
        )

        out_path = os.path.join(self.output_3d, output_filename)

        # 🔥 Check if file exists, delete it first
        # if os.path.exists(out_path):
        #     os.remove(out_path)

        # 🔥 Save NetCDF safely using netCDF4
        ds.to_netcdf(out_path, engine="netcdf4")

        return out_path


    def batch_process_zip(self, zip_path: str) -> List[str]:
        extract_dir = os.path.join(tempfile.gettempdir(), "unzipped_name_extract")

        os.makedirs(extract_dir, exist_ok=True)
        
        ###
        

            # Function to empty folder contents
        def empty_folder(folder_path):
            import os
            import glob
            files = glob.glob(os.path.join(folder_path, '*'))
            for f in files:
                try:
                    os.remove(f)
                except IsADirectoryError:
                    shutil.rmtree(f)

        # 🛠 Clear cached open files and garbage collect before deleting
        
        # 🔥 Empty previous outputs, do not delete folders
        if os.path.exists(self.output_3d):
            empty_folder(self.output_3d)
        else:
            os.makedirs(self.output_3d, exist_ok=True)

        # if os.path.exists(self.output_horizontal):
        #     empty_folder(self.output_horizontal)
        # else:
        #     os.makedirs(self.output_horizontal, exist_ok=True)

        # if os.path.exists(extract_dir):
        #     shutil.rmtree(extract_dir)
        # os.makedirs(extract_dir, exist_ok=True)

        

        
        
        #####

        with zipfile.ZipFile(zip_path, 'r') as zip_ref:
            zip_ref.extractall(extract_dir)

        txt_files = []
        for root, _, files in os.walk(extract_dir):
            for file in files:
                if file.endswith(".txt"):
                    txt_files.append(os.path.join(root, file))

        horizontal_files = []
        grouped_3d = {}

        pattern = re.compile(r"_T(\d+)_.*_Z(\d+)\.txt$")

        for f in txt_files:
            if self._is_horizontal_file(f):
                horizontal_files.append(f)
            else:
                match = pattern.search(f)
                if match:
                    t = int(match.group(1))
                    z = int(match.group(2))
                    grouped_3d.setdefault(t, []).append((z, f))

        nc_files = []

        # Process horizontal
        for f in sorted(horizontal_files):
            base_name = os.path.splitext(os.path.basename(f))[0]
            out_nc = self._convert_horizontal(f, f"{base_name}.nc")
            nc_files.append(out_nc)

        # Process 3D
        for t_key in sorted(grouped_3d):
            group = sorted(grouped_3d[t_key])
            out_nc = self._convert_3d_group(group, f"T{t_key}.nc")
            nc_files.append(out_nc)

        return nc_files