File size: 4,081 Bytes
846e270
 
9cf8e68
 
 
 
846e270
 
9cf8e68
 
 
 
 
 
 
 
 
 
846e270
9cf8e68
 
 
 
846e270
9cf8e68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
846e270
9cf8e68
 
 
 
 
 
 
 
 
 
 
 
 
 
846e270
9cf8e68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from dotenv import find_dotenv, load_dotenv
import streamlit as st
from typing import Generator
from groq import Groq

_ = load_dotenv(find_dotenv())
st.set_page_config(page_icon="πŸ’¬", layout="wide", page_title="Groq Chat Bot...")


def icon(emoji: str):
    """Shows an emoji as a Notion-style page icon."""
    st.write(
        f'<span style="font-size: 78px; line-height: 1">{emoji}</span>',
        unsafe_allow_html=True,
    )


icon("πŸ“£")

st.subheader("Groq Chat Streamlit App", divider="rainbow", anchor=False)

client = Groq(
    api_key=os.environ['GROQ_API_KEY'],
)

# Initialize chat history and selected model
if "messages" not in st.session_state:
    st.session_state.messages = []

if "selected_model" not in st.session_state:
    st.session_state.selected_model = None

# Define model details
models = {
    "mixtral-8x7b-32768": {
        "name": "Mixtral-8x7b-Instruct-v0.1",
        "tokens": 32768,
        "developer": "Mistral",
    },
    "llama2-70b-4096": {"name": "LLaMA2-70b-chat", "tokens": 4096, "developer": "Meta"},
    "gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 8192, "developer": "Google"},
}

# Layout for model selection and max_tokens slider
col1, col2 = st.columns(2)

with col1:
    model_option = st.selectbox(
        "Choose a model:",
        options=list(models.keys()),
        format_func=lambda x: models[x]["name"],
        index=0,  # Default to the first model in the list
    )

# Detect model change and clear chat history if model has changed
if st.session_state.selected_model != model_option:
    st.session_state.messages = []
    st.session_state.selected_model = model_option

max_tokens_range = models[model_option]["tokens"]

with col2:
    # Adjust max_tokens slider dynamically based on the selected model
    max_tokens = st.slider(
        "Max Tokens:",
        min_value=512,  # Minimum value to allow some flexibility
        max_value=max_tokens_range,
        # Default value or max allowed if less
        value=min(32768, max_tokens_range),
        step=512,
        help=f"Adjust the maximum number of tokens (words) for the model's response. Max for selected model: {max_tokens_range}",
    )

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    avatar = "πŸ€–" if message["role"] == "assistant" else "πŸ•Ί"
    with st.chat_message(message["role"], avatar=avatar):
        st.markdown(message["content"])


def generate_chat_responses(chat_completion) -> Generator[str, None, None]:
    """Yield chat response content from the Groq API response."""
    for chunk in chat_completion:
        if chunk.choices[0].delta.content:
            yield chunk.choices[0].delta.content


if prompt := st.chat_input("Enter your prompt here..."):
    st.session_state.messages.append({"role": "user", "content": prompt})

    with st.chat_message("user", avatar="πŸ•Ί"):  
        st.markdown(prompt)

    # Fetch response from Groq API
    try:
        chat_completion = client.chat.completions.create(
            model=model_option,
            messages=[
                {"role": m["role"], "content": m["content"]}
                for m in st.session_state.messages
            ],
            max_tokens=max_tokens,
            stream=True,
        )

        # Use the generator function with st.write_stream
        with st.chat_message("assistant", avatar="πŸ€–"):
            chat_responses_generator = generate_chat_responses(chat_completion)
            full_response = st.write_stream(chat_responses_generator)
    except Exception as e:
        st.error(e, icon="🚨")

    # Append the full response to session_state.messages
    if isinstance(full_response, str):
        st.session_state.messages.append(
            {"role": "assistant", "content": full_response}
        )
    else:
        # Handle the case where full_response is not a string
        combined_response = "\n".join(str(item) for item in full_response)
        st.session_state.messages.append(
            {"role": "assistant", "content": combined_response}
        )