File size: 17,691 Bytes
d90a0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import gradio as gr
import time
import torch
import tempfile
import numpy as np
import scipy.io.wavfile as wavfile

from transformers import AutoProcessor, BarkModel
import whisper



import gradio as gr
import time
import tempfile
import numpy as np
import scipy.io.wavfile as wavfile
import cv2
import os
import json
from moviepy.editor import VideoFileClip
import shutil

# Bark TTS
model_bark = BarkModel.from_pretrained("suno/bark")
processor_bark = AutoProcessor.from_pretrained("suno/bark")
model_bark.to("cuda" if torch.cuda.is_available() else "cpu")
bark_voice_preset = "v2/en_speaker_6"

def bark_tts(text):
    inputs = processor_bark(text, return_tensors="pt", voice_preset=bark_voice_preset)
    inputs = {k: v.to(model_bark.device) for k, v in inputs.items()}
    speech_values = model_bark.generate(**inputs)
    speech = speech_values.cpu().numpy().squeeze()
    speech = (speech * 32767).astype(np.int16)
    temp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
    wavfile.write(temp_wav.name, 22050, speech)
    return temp_wav.name

# Whisper STT
whisper_model = whisper.load_model("base")
def whisper_stt(audio_path):
    if not audio_path or not os.path.exists(audio_path): return ""
    result = whisper_model.transcribe(audio_path)
    return result["text"]


# DeepFace (Video Face Emotion)
def ensure_mp4(video_input):
    # video_input could be a file-like object, a path, or a Gradio temp path
    if isinstance(video_input, str):
        input_path = video_input
    else:
        # It's a file-like object (rare for Gradio video, but handle it)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".webm") as temp_in:
            temp_in.write(video_input.read())
            input_path = temp_in.name

    # If already mp4, return as is
    if input_path.endswith(".mp4"):
        return input_path

    # Convert to mp4 using moviepy
    mp4_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
    try:
        clip = VideoFileClip(input_path)
        clip.write_videofile(mp4_path, codec="libx264", audio=False, verbose=False, logger=None)
        clip.close()
    except Exception as e:
        print("Video conversion failed:", e)
        # As fallback, just copy original
        shutil.copy(input_path, mp4_path)
    return mp4_path

def analyze_video_emotions(video_input, sample_rate=15):
    # Convert input to an mp4 file OpenCV can process
    mp4_path = ensure_mp4(video_input)
    if not mp4_path or not os.path.exists(mp4_path):
        return "neutral"
    cap = cv2.VideoCapture(mp4_path)
    frame_count = 0
    emotion_counts = {}
    while True:
        ret, frame = cap.read()
        if not ret: break
        if frame_count % sample_rate == 0:
            try:
                result = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False)
                dominant = result[0]["dominant_emotion"] if isinstance(result, list) else result["dominant_emotion"]
                emotion_counts[dominant] = emotion_counts.get(dominant, 0) + 1
            except Exception: pass
        frame_count += 1
    cap.release()
    if not emotion_counts: return "neutral"
    return max(emotion_counts.items(), key=lambda x: x[1])[0]

wav2vec_model_name = "HaniaRuby/speech-emotion-recognition-wav2vec2"
wav2vec_processor = Wav2Vec2Processor.from_pretrained(wav2vec_model_name)
wav2vec_model = Wav2Vec2ForSequenceClassification.from_pretrained(wav2vec_model_name)
wav2vec_model.eval()
voice_label_map = {
    0: 'angry', 1: 'disgust', 2: 'fear', 3: 'happy',
    4: 'neutral', 5: 'sad', 6: 'surprise'
}



def analyze_audio_emotion(audio_path):
    if not audio_path or not os.path.exists(audio_path): return "neutral"
    speech, sr = librosa.load(audio_path, sr=16000)
    inputs = wav2vec_processor(speech, sampling_rate=16000, return_tensors="pt")
    with torch.no_grad():
        logits = wav2vec_model(**inputs).logits
    probs = torch.nn.functional.softmax(logits, dim=-1)
    predicted_id = torch.argmax(probs, dim=-1).item()
    return voice_label_map.get(predicted_id, "neutral")

# --- Effective confidence calculation
def interpret_confidence(voice_label, face_label, answer_score_label, k=0.2):
    emotion_map = {"happy": 0.9, "neutral": 0.6, "surprised": 0.7, "sad": 0.4, "angry": 0.3, "disgust": 0.2, "fear": 0.3, "no_face": 0.5, "unknown": 0.5}
    answer_score_map = {"excellent": 1.0, "good": 0.8, "medium": 0.6, "poor": 0.3}
    voice_score, face_score, answer_score = emotion_map.get(voice_label, 0.5), emotion_map.get(face_label, 0.5), answer_score_map.get(answer_score_label, 0.5)
    avg_emotion = (voice_score + face_score) / 2
    control_bonus = max(0, answer_score - avg_emotion) * k
    eff_conf = (0.5 * answer_score + 0.22 * voice_score + 0.18 * face_score + 0.1 * control_bonus)
    return {"effective_confidence": round(eff_conf, 3), "answer_score": round(answer_score, 2), "voice_score": round(voice_score, 2), "face_score": round(face_score, 2), "control_bonus": round(control_bonus, 3)}

seniority_mapping = {
    "Entry-level": 1, "Junior": 2, "Mid-Level": 3, "Senior": 4, "Lead": 5
}
import gradio as gr
import time
import tempfile
import numpy as np
import scipy.io.wavfile as wavfile
import cv2
import os
import json



# --- 2. Gradio App ---

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    user_data = gr.State({})
    interview_state = gr.State({})
    missing_fields_state = gr.State([])

    # --- UI Layout ---
    with gr.Column(visible=True) as user_info_section:
        gr.Markdown("## Candidate Information")
        cv_file = gr.File(label="Upload CV")
        job_desc = gr.Textbox(label="Job Description")
        start_btn = gr.Button("Continue", interactive=False)

    with gr.Column(visible=False) as missing_section:
        gr.Markdown("## Missing Information")
        name_in = gr.Textbox(label="Name", visible=False)
        role_in = gr.Textbox(label="Job Role", visible=False)
        seniority_in = gr.Dropdown(list(seniority_mapping.keys()), label="Seniority", visible=False)
        skills_in = gr.Textbox(label="Skills", visible=False)
        submit_btn = gr.Button("Submit", interactive=False)

    with gr.Column(visible=False) as interview_pre_section:
        pre_interview_greeting_md = gr.Markdown()
        start_interview_final_btn = gr.Button("Start Interview")

    with gr.Column(visible=False) as interview_section:
        gr.Markdown("## Interview in Progress")
        question_audio = gr.Audio(label="Listen", interactive=False, autoplay=True)
        question_text = gr.Markdown()
        user_audio_input = gr.Audio(sources=["microphone"], type="filepath", label="1. Record Audio Answer")
        user_video_input = gr.Video(sources=["webcam"], label="2. Record Video Answer")
        stt_transcript = gr.Textbox(label="Transcribed Answer (edit if needed)")
        confirm_btn = gr.Button("Confirm Answer")
        evaluation_display = gr.Markdown()
        emotion_display = gr.Markdown()
        interview_summary = gr.Markdown(visible=False)

    # --- UI Logic ---

    def validate_start_btn(cv_file, job_desc):
        return gr.update(interactive=(cv_file is not None and hasattr(cv_file, "name") and bool(job_desc and job_desc.strip())))
    cv_file.change(validate_start_btn, [cv_file, job_desc], start_btn)
    job_desc.change(validate_start_btn, [cv_file, job_desc], start_btn)

    def process_and_route_initial(cv_file, job_desc):
        details = extract_candidate_details(cv_file.name)
        job_info = extract_job_details(job_desc)
        data = {
            "name": details.get("name", "unknown"), "job_role": job_info.get("job_title", "unknown"),
            "seniority": job_info.get("experience_level", "unknown"), "skills": job_info.get("skills", [])
        }
        missing = [k for k, v in data.items() if (isinstance(v, str) and v.lower() == "unknown") or not v]
        if missing:
            return data, missing, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
        else:
            greeting = f"Hello {data['name']}, your profile is ready. Click 'Start Interview' when ready."
            return data, missing, gr.update(visible=False), gr.update(visible=False), gr.update(visible=True, value=greeting)
    start_btn.click(
        process_and_route_initial,
        [cv_file, job_desc],
        [user_data, missing_fields_state, user_info_section, missing_section, pre_interview_greeting_md]
    )

    def show_missing(missing):
        if missing is None: missing = []
        return gr.update(visible="name" in missing), gr.update(visible="job_role" in missing), gr.update(visible="seniority" in missing), gr.update(visible="skills" in missing)
    missing_fields_state.change(show_missing, missing_fields_state, [name_in, role_in, seniority_in, skills_in])

    def validate_fields(name, role, seniority, skills, missing):
        if not missing: return gr.update(interactive=False)
        all_filled = all([(not ("name" in missing) or bool(name.strip())), (not ("job_role" in missing) or bool(role.strip())), (not ("seniority" in missing) or bool(seniority)), (not ("skills" in missing) or bool(skills.strip())),])
        return gr.update(interactive=all_filled)
    for inp in [name_in, role_in, seniority_in, skills_in]:
        inp.change(validate_fields, [name_in, role_in, seniority_in, skills_in, missing_fields_state], submit_btn)

    def complete_manual(data, name, role, seniority, skills):
        if data["name"].lower() == "unknown": data["name"] = name
        if data["job_role"].lower() == "unknown": data["job_role"] = role
        if data["seniority"].lower() == "unknown": data["seniority"] = seniority
        if not data["skills"]: data["skills"] = [s.strip() for s in skills.split(",")]
        greeting = f"Hello {data['name']}, your profile is ready. Click 'Start Interview' to begin."
        return data, gr.update(visible=False), gr.update(visible=True), gr.update(value=greeting)
    submit_btn.click(complete_manual, [user_data, name_in, role_in, seniority_in, skills_in], [user_data, missing_section, interview_pre_section, pre_interview_greeting_md])

    def start_interview(data):
        # --- Advanced state with full logging ---
        state = {
            "questions": [], "answers": [], "face_labels": [], "voice_labels": [], "timings": [],
            "question_evaluations": [], "answer_evaluations": [], "effective_confidences": [],
            "conversation_history": [],
            "difficulty_adjustment": None,
            "question_idx": 0, "max_questions": 3, "q_start_time": time.time(),
            "log": []
        }
        # --- Optionally: context retrieval here (currently just blank) ---
        context = ""
        prompt = build_interview_prompt(
            conversation_history=[], user_response="", context=context, job_role=data["job_role"],
            skills=data["skills"], seniority=data["seniority"], difficulty_adjustment=None,
            voice_label="neutral", face_label="neutral"
        )
        first_q = groq_llm.predict(prompt)
        # Evaluate Q for quality
        q_eval = eval_question_quality(first_q, data["job_role"], data["seniority"], None)
        state["questions"].append(first_q)
        state["question_evaluations"].append(q_eval)
        state["conversation_history"].append({'role': 'Interviewer', 'content': first_q})
        audio_path = bark_tts(first_q)
        # LOG
        state["log"].append({"type": "question", "question": first_q, "question_eval": q_eval, "timestamp": time.time()})
        return state, gr.update(visible=False), gr.update(visible=True), audio_path, f"*Question 1:* {first_q}"
    start_interview_final_btn.click(start_interview, [user_data], [interview_state, interview_pre_section, interview_section, question_audio, question_text])

    def transcribe(audio_path):
        return whisper_stt(audio_path)
    user_audio_input.change(transcribe, user_audio_input, stt_transcript)

    def process_answer(transcript, audio_path, video_path, state, data):
        if not transcript and not video_path:
            return state, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
        elapsed = round(time.time() - state.get("q_start_time", time.time()), 2)
        state["timings"].append(elapsed)
        state["answers"].append(transcript)
        state["conversation_history"].append({'role': 'Candidate', 'content': transcript})

        # --- 1. Emotion analysis ---
        voice_label = analyze_audio_emotion(audio_path)
        face_label = analyze_video_emotions(video_path)
        state["voice_labels"].append(voice_label)
        state["face_labels"].append(face_label)

        # --- 2. Evaluate previous Q and Answer ---
        last_q = state["questions"][-1]
        q_eval = state["question_evaluations"][-1]  # Already in state
        ref_answer = generate_reference_answer(last_q, data["job_role"], data["seniority"])
        answer_eval = evaluate_answer(last_q, transcript, ref_answer, data["job_role"], data["seniority"], None)
        state["answer_evaluations"].append(answer_eval)
        answer_score = answer_eval.get("Score", "medium") if answer_eval else "medium"

        # --- 3. Adaptive difficulty ---
        if answer_score == "excellent":
            state["difficulty_adjustment"] = "harder"
        elif answer_score in ("medium", "poor"):
            state["difficulty_adjustment"] = "easier"
        else:
            state["difficulty_adjustment"] = None

        # --- 4. Effective confidence ---
        eff_conf = interpret_confidence(voice_label, face_label, answer_score)
        state["effective_confidences"].append(eff_conf)

        # --- LOG ---
        state["log"].append({
            "type": "answer",
            "question": last_q,
            "answer": transcript,
            "answer_eval": answer_eval,
            "ref_answer": ref_answer,
            "face_label": face_label,
            "voice_label": voice_label,
            "effective_confidence": eff_conf,
            "timing": elapsed,
            "timestamp": time.time()
        })

        # --- Next or End ---
        qidx = state["question_idx"] + 1
        if qidx >= state["max_questions"]:
            # Save as JSON (optionally)
            timestamp = time.strftime("%Y%m%d_%H%M%S")
            log_file = f"interview_log_{timestamp}.json"
            with open(log_file, "w", encoding="utf-8") as f:
                json.dump(state["log"], f, indent=2, ensure_ascii=False)
            # Report
            summary = "# Interview Summary\n"
            for i, q in enumerate(state["questions"]):
                summary += (f"\n### Q{i + 1}: {q}\n"
                            f"- *Answer*: {state['answers'][i]}\n"
                            f"- *Q Eval*: {state['question_evaluations'][i]}\n"
                            f"- *A Eval*: {state['answer_evaluations'][i]}\n"
                            f"- *Face Emotion: {state['face_labels'][i]}, **Voice Emotion*: {state['voice_labels'][i]}\n"
                            f"- *Effective Confidence*: {state['effective_confidences'][i]['effective_confidence']}\n"
                            f"- *Time*: {state['timings'][i]}s\n")
            summary += f"\n\n⏺ Full log saved as {log_file}."
            return (state, gr.update(visible=True, value=summary), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(visible=True, value=f"Last Detected — Face: {face_label}, Voice: {voice_label}"))
        else:
            # --- Build next prompt using adaptive difficulty ---
            state["question_idx"] = qidx
            state["q_start_time"] = time.time()
            context = ""  # You can add your context logic here
            prompt = build_interview_prompt(
                conversation_history=state["conversation_history"],
                user_response=transcript,
                context=context,
                job_role=data["job_role"],
                skills=data["skills"],
                seniority=data["seniority"],
                difficulty_adjustment=state["difficulty_adjustment"],
                face_label=face_label,
                voice_label=voice_label,
                effective_confidence=eff_conf
            )
            next_q = groq_llm.predict(prompt)
            # Evaluate Q quality
            q_eval = eval_question_quality(next_q, data["job_role"], data["seniority"], None)
            state["questions"].append(next_q)
            state["question_evaluations"].append(q_eval)
            state["conversation_history"].append({'role': 'Interviewer', 'content': next_q})
            state["log"].append({"type": "question", "question": next_q, "question_eval": q_eval, "timestamp": time.time()})
            audio_path = bark_tts(next_q)
            # Display evaluations
            eval_md = f"*Last Answer Eval:* {answer_eval}\n\n*Effective Confidence:* {eff_conf}"
            return (
                state, gr.update(visible=False), audio_path, f"*Question {qidx + 1}:* {next_q}",
                gr.update(value=None), gr.update(value=None),
                gr.update(visible=True, value=f"Last Detected — Face: {face_label}, Voice: {voice_label}"),
            )
    confirm_btn.click(
        process_answer,
        [stt_transcript, user_audio_input, user_video_input, interview_state, user_data],
        [interview_state, interview_summary, question_audio, question_text, user_audio_input, user_video_input, emotion_display]
    ).then(
        lambda: (gr.update(value=None), gr.update(value=None)), None, [user_audio_input, user_video_input]
    )

demo.launch()