File size: 9,560 Bytes
7ca3dfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from dotenv import load_dotenv
import pandas as pd
import streamlit as st
import streamlit_authenticator as stauth
from streamlit_modal import Modal

from utils import new_file, clear_memory, append_documentation_to_sidebar, load_authenticator_config, init_qa, \
    append_header
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack import Document

load_dotenv()

OPENAI_MODELS = ['gpt-3.5-turbo',
                 "gpt-4",
                 "gpt-4-1106-preview"]

OPEN_MODELS = [
    'mistralai/Mistral-7B-Instruct-v0.1',
    'HuggingFaceH4/zephyr-7b-beta'
]


def reset_chat_memory():
    st.button(
        'Reset chat memory',
        key="reset-memory-button",
        on_click=clear_memory,
        help="Clear the conversational memory. Currently implemented to retain the 4 most recent messages.",
        disabled=False)


def manage_files(modal, document_store):
    open_modal = st.sidebar.button("Manage Files", use_container_width=True)
    if open_modal:
        modal.open()

    if modal.is_open():
        with modal.container():
            uploaded_file = st.file_uploader(
                "Upload a CV in PDF format",
                type=("pdf",),
                on_change=new_file(),
                disabled=st.session_state['document_qa_model'] is None,
                label_visibility="collapsed",
                help="The document is used to answer your questions. The system will process the document and store it in a RAG to answer your questions.",
            )
            edited_df = st.data_editor(use_container_width=True, data=st.session_state['files'],
                                       num_rows='dynamic',
                                       column_order=['name', 'size', 'is_active'],
                                       column_config={'name': {'editable': False}, 'size': {'editable': False},
                                                      'is_active': {'editable': True, 'type': 'checkbox',
                                                                    'width': 100}}
                                       )
            st.session_state['files'] = pd.DataFrame(columns=['name', 'content', 'size', 'is_active'])

            if uploaded_file:
                st.session_state['file_uploaded'] = True
                st.session_state['files'] = pd.concat([st.session_state['files'], edited_df])
                with st.spinner('Processing the CV content...'):
                    store_file_in_table(document_store, uploaded_file)
                    ingest_document(uploaded_file)


def ingest_document(uploaded_file):
    if not st.session_state['document_qa_model']:
        st.warning('Please select a model to start asking questions')
    else:
        try:
            st.session_state['document_qa_model'].ingest_pdf(uploaded_file)
            st.success('Document processed successfully')
        except Exception as e:
            st.error(f"Error processing the document: {e}")
            st.session_state['file_uploaded'] = False


def store_file_in_table(document_store, uploaded_file):
    pdf_content = uploaded_file.getvalue()
    st.session_state['pdf_content'] = pdf_content
    st.session_state.messages = []
    document = Document(content=pdf_content, meta={"name": uploaded_file.name})
    df = pd.DataFrame(st.session_state['files'])
    df['is_active'] = False
    st.session_state['files'] = pd.concat([df, pd.DataFrame(
        [{"name": uploaded_file.name, "content": pdf_content, "size": len(pdf_content),
          "is_active": True}])])
    document_store.write_documents([document])


def init_session_state():
    st.session_state.setdefault('files', pd.DataFrame(columns=['name', 'content', 'size', 'is_active']))
    st.session_state.setdefault('models', [])
    st.session_state.setdefault('api_keys', {})
    st.session_state.setdefault('current_selected_model', 'gpt-3.5-turbo')
    st.session_state.setdefault('current_api_key', '')
    st.session_state.setdefault('messages', [])
    st.session_state.setdefault('pdf_content', None)
    st.session_state.setdefault('memory', None)
    st.session_state.setdefault('pdf', None)
    st.session_state.setdefault('document_qa_model', None)
    st.session_state.setdefault('file_uploaded', False)


def set_page_config():
    st.set_page_config(
        page_title="CV Insights AI Assistant",
        page_icon=":shark:",
        initial_sidebar_state="expanded",
        layout="wide",
        menu_items={
            'Get Help': 'https://www.extremelycoolapp.com/help',
            'Report a bug': "https://www.extremelycoolapp.com/bug",
            'About': "# This is a header. This is an *extremely* cool app!"
        }
    )


def update_running_model(api_key, model):
    st.session_state['api_keys'][model] = api_key
    st.session_state['document_qa_model'] = init_qa(model, api_key)


def init_api_key_dict():
    st.session_state['models'] = OPENAI_MODELS + list(OPEN_MODELS) + ['local LLM']
    for model_name in OPENAI_MODELS:
        st.session_state['api_keys'][model_name] = None


def display_chat_messages(chat_box, chat_input):
    with chat_box:
        if chat_input:
            for message in st.session_state.messages:
                with st.chat_message(message["role"]):
                    st.markdown(message["content"], unsafe_allow_html=True)

            st.chat_message("user").markdown(chat_input)
            with st.chat_message("assistant"):
                # process user input and generate response
                response = st.session_state['document_qa_model'].inference(chat_input, st.session_state.messages)

                st.markdown(response)
                st.session_state.messages.append({"role": "user", "content": chat_input})
                st.session_state.messages.append({"role": "assistant", "content": response})


def setup_model_selection():
    model = st.selectbox(
        "Model:",
        options=st.session_state['models'],
        index=0,  # default to the first model in the list gpt-3.5-turbo
        placeholder="Select model",
        help="Select an LLM:"
    )

    if model:
        if model != st.session_state['current_selected_model']:
            st.session_state['current_selected_model'] = model
            if model == 'local LLM':
                st.session_state['document_qa_model'] = init_qa(model)

    api_key = st.sidebar.text_input("Enter LLM-authorization Key:", type="password",
                                    disabled=st.session_state['current_selected_model'] == 'local LLM')
    if api_key and api_key != st.session_state['current_api_key']:
        update_running_model(api_key, model)
        st.session_state['current_api_key'] = api_key

    return model


def setup_task_selection(model):
    # enable extractive and generative tasks if we're using a local LLM or an OpenAI model with an API key
    if model == 'local LLM' or st.session_state['api_keys'].get(model):
        task_options = ['Extractive', 'Generative']
    else:
        task_options = ['Extractive']

    task_selection = st.sidebar.radio('Select the task:', task_options)

    # TODO: Add the task selection logic here (initializing the model based on the task)


def setup_page_body():
    chat_box = st.container(height=350, border=False)
    chat_input = st.chat_input(
        placeholder="Upload a document to start asking questions...",
        disabled=not st.session_state['file_uploaded'],
    )
    if st.session_state['file_uploaded']:
        display_chat_messages(chat_box, chat_input)


class StreamlitApp:
    def __init__(self):
        self.authenticator_config = load_authenticator_config()
        self.document_store = InMemoryDocumentStore()
        set_page_config()
        self.authenticator = self.init_authenticator()
        init_session_state()
        init_api_key_dict()

    def init_authenticator(self):
        return stauth.Authenticate(
            self.authenticator_config['credentials'],
            self.authenticator_config['cookie']['name'],
            self.authenticator_config['cookie']['key'],
            self.authenticator_config['cookie']['expiry_days']
        )

    def setup_sidebar(self):
        with st.sidebar:
            st.sidebar.image("resources/puma.png", use_column_width=True)

            # Sidebar for Task Selection
            st.sidebar.header('Options:')
            model = setup_model_selection()
            setup_task_selection(model)
            st.divider()
            self.authenticator.logout()
            reset_chat_memory()
            modal = Modal("Manage Files", key="demo-modal")
            manage_files(modal, self.document_store)
            st.divider()
            append_documentation_to_sidebar()

    def run(self):
        name, authentication_status, username = self.authenticator.login()
        if authentication_status:
            self.run_authenticated_app()
        elif st.session_state["authentication_status"] is False:
            st.error('Username/password is incorrect')
        elif st.session_state["authentication_status"] is None:
            st.warning('Please enter your username and password')

    def run_authenticated_app(self):
        self.setup_sidebar()
        append_header()
        setup_page_body()


app = StreamlitApp()
app.run()