File size: 9,560 Bytes
7ca3dfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
from dotenv import load_dotenv
import pandas as pd
import streamlit as st
import streamlit_authenticator as stauth
from streamlit_modal import Modal
from utils import new_file, clear_memory, append_documentation_to_sidebar, load_authenticator_config, init_qa, \
append_header
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack import Document
load_dotenv()
OPENAI_MODELS = ['gpt-3.5-turbo',
"gpt-4",
"gpt-4-1106-preview"]
OPEN_MODELS = [
'mistralai/Mistral-7B-Instruct-v0.1',
'HuggingFaceH4/zephyr-7b-beta'
]
def reset_chat_memory():
st.button(
'Reset chat memory',
key="reset-memory-button",
on_click=clear_memory,
help="Clear the conversational memory. Currently implemented to retain the 4 most recent messages.",
disabled=False)
def manage_files(modal, document_store):
open_modal = st.sidebar.button("Manage Files", use_container_width=True)
if open_modal:
modal.open()
if modal.is_open():
with modal.container():
uploaded_file = st.file_uploader(
"Upload a CV in PDF format",
type=("pdf",),
on_change=new_file(),
disabled=st.session_state['document_qa_model'] is None,
label_visibility="collapsed",
help="The document is used to answer your questions. The system will process the document and store it in a RAG to answer your questions.",
)
edited_df = st.data_editor(use_container_width=True, data=st.session_state['files'],
num_rows='dynamic',
column_order=['name', 'size', 'is_active'],
column_config={'name': {'editable': False}, 'size': {'editable': False},
'is_active': {'editable': True, 'type': 'checkbox',
'width': 100}}
)
st.session_state['files'] = pd.DataFrame(columns=['name', 'content', 'size', 'is_active'])
if uploaded_file:
st.session_state['file_uploaded'] = True
st.session_state['files'] = pd.concat([st.session_state['files'], edited_df])
with st.spinner('Processing the CV content...'):
store_file_in_table(document_store, uploaded_file)
ingest_document(uploaded_file)
def ingest_document(uploaded_file):
if not st.session_state['document_qa_model']:
st.warning('Please select a model to start asking questions')
else:
try:
st.session_state['document_qa_model'].ingest_pdf(uploaded_file)
st.success('Document processed successfully')
except Exception as e:
st.error(f"Error processing the document: {e}")
st.session_state['file_uploaded'] = False
def store_file_in_table(document_store, uploaded_file):
pdf_content = uploaded_file.getvalue()
st.session_state['pdf_content'] = pdf_content
st.session_state.messages = []
document = Document(content=pdf_content, meta={"name": uploaded_file.name})
df = pd.DataFrame(st.session_state['files'])
df['is_active'] = False
st.session_state['files'] = pd.concat([df, pd.DataFrame(
[{"name": uploaded_file.name, "content": pdf_content, "size": len(pdf_content),
"is_active": True}])])
document_store.write_documents([document])
def init_session_state():
st.session_state.setdefault('files', pd.DataFrame(columns=['name', 'content', 'size', 'is_active']))
st.session_state.setdefault('models', [])
st.session_state.setdefault('api_keys', {})
st.session_state.setdefault('current_selected_model', 'gpt-3.5-turbo')
st.session_state.setdefault('current_api_key', '')
st.session_state.setdefault('messages', [])
st.session_state.setdefault('pdf_content', None)
st.session_state.setdefault('memory', None)
st.session_state.setdefault('pdf', None)
st.session_state.setdefault('document_qa_model', None)
st.session_state.setdefault('file_uploaded', False)
def set_page_config():
st.set_page_config(
page_title="CV Insights AI Assistant",
page_icon=":shark:",
initial_sidebar_state="expanded",
layout="wide",
menu_items={
'Get Help': 'https://www.extremelycoolapp.com/help',
'Report a bug': "https://www.extremelycoolapp.com/bug",
'About': "# This is a header. This is an *extremely* cool app!"
}
)
def update_running_model(api_key, model):
st.session_state['api_keys'][model] = api_key
st.session_state['document_qa_model'] = init_qa(model, api_key)
def init_api_key_dict():
st.session_state['models'] = OPENAI_MODELS + list(OPEN_MODELS) + ['local LLM']
for model_name in OPENAI_MODELS:
st.session_state['api_keys'][model_name] = None
def display_chat_messages(chat_box, chat_input):
with chat_box:
if chat_input:
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"], unsafe_allow_html=True)
st.chat_message("user").markdown(chat_input)
with st.chat_message("assistant"):
# process user input and generate response
response = st.session_state['document_qa_model'].inference(chat_input, st.session_state.messages)
st.markdown(response)
st.session_state.messages.append({"role": "user", "content": chat_input})
st.session_state.messages.append({"role": "assistant", "content": response})
def setup_model_selection():
model = st.selectbox(
"Model:",
options=st.session_state['models'],
index=0, # default to the first model in the list gpt-3.5-turbo
placeholder="Select model",
help="Select an LLM:"
)
if model:
if model != st.session_state['current_selected_model']:
st.session_state['current_selected_model'] = model
if model == 'local LLM':
st.session_state['document_qa_model'] = init_qa(model)
api_key = st.sidebar.text_input("Enter LLM-authorization Key:", type="password",
disabled=st.session_state['current_selected_model'] == 'local LLM')
if api_key and api_key != st.session_state['current_api_key']:
update_running_model(api_key, model)
st.session_state['current_api_key'] = api_key
return model
def setup_task_selection(model):
# enable extractive and generative tasks if we're using a local LLM or an OpenAI model with an API key
if model == 'local LLM' or st.session_state['api_keys'].get(model):
task_options = ['Extractive', 'Generative']
else:
task_options = ['Extractive']
task_selection = st.sidebar.radio('Select the task:', task_options)
# TODO: Add the task selection logic here (initializing the model based on the task)
def setup_page_body():
chat_box = st.container(height=350, border=False)
chat_input = st.chat_input(
placeholder="Upload a document to start asking questions...",
disabled=not st.session_state['file_uploaded'],
)
if st.session_state['file_uploaded']:
display_chat_messages(chat_box, chat_input)
class StreamlitApp:
def __init__(self):
self.authenticator_config = load_authenticator_config()
self.document_store = InMemoryDocumentStore()
set_page_config()
self.authenticator = self.init_authenticator()
init_session_state()
init_api_key_dict()
def init_authenticator(self):
return stauth.Authenticate(
self.authenticator_config['credentials'],
self.authenticator_config['cookie']['name'],
self.authenticator_config['cookie']['key'],
self.authenticator_config['cookie']['expiry_days']
)
def setup_sidebar(self):
with st.sidebar:
st.sidebar.image("resources/puma.png", use_column_width=True)
# Sidebar for Task Selection
st.sidebar.header('Options:')
model = setup_model_selection()
setup_task_selection(model)
st.divider()
self.authenticator.logout()
reset_chat_memory()
modal = Modal("Manage Files", key="demo-modal")
manage_files(modal, self.document_store)
st.divider()
append_documentation_to_sidebar()
def run(self):
name, authentication_status, username = self.authenticator.login()
if authentication_status:
self.run_authenticated_app()
elif st.session_state["authentication_status"] is False:
st.error('Username/password is incorrect')
elif st.session_state["authentication_status"] is None:
st.warning('Please enter your username and password')
def run_authenticated_app(self):
self.setup_sidebar()
append_header()
setup_page_body()
app = StreamlitApp()
app.run()
|