File size: 14,455 Bytes
1bcfe87
b888bcf
6a4b741
 
 
ad569d5
5715833
6db905d
6a4b741
 
b888bcf
f424501
4c24d92
f6d8c86
 
 
 
 
b516d13
4c24d92
 
4c5b4b7
c75f6a7
 
eff8fcf
b516d13
4c24d92
 
 
 
b516d13
 
 
f6d8c86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b888bcf
c4cd17d
2f833d2
c4cd17d
 
 
 
 
 
 
6db905d
09de898
2f833d2
 
292ff11
c4cd17d
 
b888bcf
6a4b741
f6d8c86
ad569d5
2f833d2
 
 
ad569d5
f6d8c86
ad569d5
ae0ca6f
 
eff8fcf
ad569d5
 
f6d8c86
2f833d2
 
 
 
b888bcf
 
 
 
f6d8c86
b626f76
6a4b741
 
 
ad569d5
f6d8c86
e04dd59
f424501
6a4b741
 
 
6b7c1b1
f6d8c86
2f833d2
c4cd17d
 
218550a
c4cd17d
09de898
5715833
 
 
 
24d15b9
5715833
 
 
 
f76d2b8
 
8fe2fce
 
f6d8c86
 
8fe2fce
be2828d
c4cd17d
f6d8c86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4cd17d
2f833d2
a8d5a97
c4cd17d
f6d8c86
eff8fcf
 
 
 
b516d13
f76d2b8
f6d8c86
c4cd17d
 
 
be2828d
 
c4cd17d
be2828d
f6d8c86
2f833d2
 
be2828d
 
a99e3b7
 
 
 
 
f6d8c86
a99e3b7
 
be2828d
f6d8c86
be2828d
ad569d5
 
6b7c1b1
be2828d
6db905d
f6d8c86
ad569d5
 
6b7c1b1
f6d8c86
 
6db905d
 
 
f6d8c86
 
6db905d
 
f6d8c86
6db905d
 
f6d8c86
4d0f254
f6d8c86
be2828d
 
 
4c5b4b7
 
be2828d
 
 
6a4b741
e04dd59
4c5b4b7
 
 
5715833
b888bcf
f6d8c86
b516d13
 
 
 
 
 
 
 
 
 
 
 
 
 
4c24d92
b516d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b425e4e
4c5b4b7
4c24d92
 
 
b516d13
 
 
2f833d2
4c5b4b7
 
 
2f833d2
 
b516d13
2f833d2
 
b516d13
2f833d2
 
b888bcf
b516d13
60ba61b
 
 
 
 
 
 
 
c75f6a7
 
 
 
5be66f8
c75f6a7
5be66f8
 
60ba61b
5be66f8
b516d13
 
 
 
 
 
5715833
2f833d2
f6d8c86
 
 
 
 
 
 
 
 
5715833
f76d2b8
5715833
 
 
f76d2b8
6a4b741
2f833d2
f6d8c86
 
2f833d2
 
 
 
60ba61b
2f833d2
dfe775f
60ba61b
 
2f833d2
f76d2b8
6a4b741
b888bcf
5715833
 
 
b888bcf
90a23cf
f6d8c86
 
90a23cf
6397acd
 
 
f6d8c86
 
5715833
 
 
6a4b741
 
f6d8c86
 
b516d13
b888bcf
2f833d2
 
f76d2b8
f6d8c86
f76d2b8
b888bcf
2f833d2
b888bcf
b516d13
f6d8c86
b516d13
 
 
 
 
 
f6d8c86
b516d13
b888bcf
8fe2fce
 
 
 
c4cd17d
5715833
2f833d2
5715833
b888bcf
f76d2b8
 
 
f6d8c86
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import os
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from share_btn import community_icon_html, loading_icon_html, share_js
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
import lora
import copy
import json
import gc
# import random

import inspect
from gradio import routes
from typing import List, Type

import base64
from io import BytesIO
from PIL import Image

MY_TOKEN = os.environ.get("MY_TOKEN")

print(torch.cuda.is_available())

def image_to_base64(image: Image.Image) -> str:
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode()
    return img_str


def get_types(cls_set: List[Type], component: str):
    docset = []
    types = []
    if component == "input":
        for cls in cls_set:
            doc = inspect.getdoc(cls)
            doc_lines = doc.split("\n")
            docset.append(doc_lines[1].split(":")[-1])
            types.append(doc_lines[1].split(")")[0].split("(")[-1])
    else:
        for cls in cls_set:
            doc = inspect.getdoc(cls)
            doc_lines = doc.split("\n")
            docset.append(doc_lines[-1].split(":")[-1])
            types.append(doc_lines[-1].split(")")[0].split("(")[-1])
    return docset, types
routes.get_types = get_types



with open("sdxl_loras.json", "r") as file:
    data = json.load(file)
    sdxl_loras_raw = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "trigger_word": item["trigger_word"],
            "weights": item["weights"],
            "is_compatible": item["is_compatible"],
            "is_pivotal": item.get("is_pivotal", False),
            "text_embedding_weights": item.get("text_embedding_weights", None),
            "likes": item.get("likes", 0),
            "downloads": item.get("downloads", 0),
            "is_nc": item.get("is_nc", False)
        }
        for item in data
    ]

device = "cuda"

state_dicts = {}

for item in sdxl_loras_raw:
    saved_name = hf_hub_download(item["repo"], item["weights"])

    if not saved_name.endswith('.safetensors'):
        state_dict = torch.load(saved_name)
        # state_dict = torch.load(saved_name, map_location=torch.device('cpu'))

    else:
        state_dict = load_file(saved_name)

    state_dicts[item["repo"]] = {
        "saved_name": saved_name,
        "state_dict": state_dict
    }

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)

pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    vae=vae,
    torch_dtype=torch.float16,
)

original_pipe = copy.deepcopy(pipe)
pipe.to(device)

last_lora = ""
last_merged = False
last_fused = False

def update_selection(selected_state: gr.SelectData, sdxl_loras):
    lora_repo = sdxl_loras[selected_state.index]["repo"]
    instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
    new_placeholder = "Type a prompt. This LoRA applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
    weight_name = sdxl_loras[selected_state.index]["weights"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }"
    
    return (
        updated_text,
        instance_prompt,
        gr.update(placeholder=new_placeholder),
        selected_state,
    )




def check_selected(selected_state):
    if not selected_state:
        raise gr.Error("You must select a LoRA dude")


def merge_incompatible_lora(full_path_lora, lora_scale):
    for weights_file in [full_path_lora]:
        if ";" in weights_file:
            weights_file, multiplier = weights_file.split(";")
            multiplier = float(multiplier)
        else:
            multiplier = lora_scale

        lora_model, weights_sd = lora.create_network_from_weights(
            multiplier,
            full_path_lora,
            pipe.vae,
            pipe.text_encoder,
            pipe.unet,
            for_inference=True,
        )
        lora_model.merge_to(
            pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda"
        )
        del weights_sd
        del lora_model
        gc.collect()


def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
    global last_lora, last_merged, last_fused, pipe

    print("✅ Running LoRAAAAA  >>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>")
    # print("prompt: ", prompt)
    # print("negative: ", negative)
    # print("lora_scale: ", lora_scale)
    # print("selected_state: ", selected_state)
    print("selected_state index: ", selected_state.index)


    if negative == "":
        negative = None

    if not selected_state:
        raise gr.Error("You must select a LoRA")
    repo_name = sdxl_loras[selected_state.index]["repo"]
    weight_name = sdxl_loras[selected_state.index]["weights"]

    full_path_lora = state_dicts[repo_name]["saved_name"]
    loaded_state_dict = state_dicts[repo_name]["state_dict"]
    cross_attention_kwargs = None
    if last_lora != repo_name:
        if last_merged:
            del pipe
            gc.collect()
            pipe = copy.deepcopy(original_pipe)
            pipe.to(device)
        elif (last_fused):
            pipe.unfuse_lora()
            pipe.unload_lora_weights()
        is_compatible = sdxl_loras[selected_state.index]["is_compatible"]

        if is_compatible:
            pipe.load_lora_weights(loaded_state_dict)
            pipe.fuse_lora(lora_scale)
            last_fused = True
        else:
            is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
            if (is_pivotal):
                pipe.load_lora_weights(loaded_state_dict)
                pipe.fuse_lora(lora_scale)
                last_fused = True

                # Add the textual inversion embeddings from pivotal tuning models
                text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
                text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
                tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
                embedding_path = hf_hub_download(
                    repo_id=repo_name, filename=text_embedding_name, repo_type="model")
                embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
                embhandler.load_embeddings(embedding_path)

            else:
                merge_incompatible_lora(full_path_lora, lora_scale)
                last_fused = False
            last_merged = True

    image = pipe(
        prompt=prompt,
        negative_prompt=negative,
        width=512,
        height=512,
        num_inference_steps=20,
        guidance_scale=7.5,
    ).images[0]
    last_lora = repo_name
    gc.collect()
    print("✅ Returning image  >>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>")
    print("image: ", image)

    return image, gr.update(visible=True)


def run_lora_light(prompt, negative, lora_scale, selected_index, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
    global last_lora, last_merged, last_fused, pipe

    print("✅ Running run_lora_light  >>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>")
    print("prompt: ", prompt)
    print("negative: ", negative)
    print("lora_scale: ", lora_scale)
    print("selected_state: ", selected_index)

    if negative == "":
        negative = None

    # if not selected_state:
    #     raise gr.Error("You must select a LoRA")

    repo_name = sdxl_loras[selected_index]["repo"]
    weight_name = sdxl_loras[selected_index]["weights"]

    full_path_lora = state_dicts[repo_name]["saved_name"]
    loaded_state_dict = state_dicts[repo_name]["state_dict"]
    cross_attention_kwargs = None
    if last_lora != repo_name:
        if last_merged:
            del pipe
            gc.collect()
            pipe = copy.deepcopy(original_pipe)
            pipe.to(device)
        elif (last_fused):
            pipe.unfuse_lora()
            pipe.unload_lora_weights()
        is_compatible = sdxl_loras[selected_index]["is_compatible"]

        if is_compatible:
            pipe.load_lora_weights(loaded_state_dict)
            pipe.fuse_lora(lora_scale)
            last_fused = True
        else:
            is_pivotal = sdxl_loras[selected_index]["is_pivotal"]
            if (is_pivotal):
                pipe.load_lora_weights(loaded_state_dict)
                pipe.fuse_lora(lora_scale)
                last_fused = True

                # Add the textual inversion embeddings from pivotal tuning models
                text_embedding_name = sdxl_loras[selected_index]["text_embedding_weights"]
                text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
                tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
                embedding_path = hf_hub_download(
                    repo_id=repo_name, filename=text_embedding_name, repo_type="model")
                embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
                embhandler.load_embeddings(embedding_path)

            else:
                merge_incompatible_lora(full_path_lora, lora_scale)
                last_fused = False
            last_merged = True

    image = pipe(
        prompt=prompt,
        negative_prompt=negative,
        width=512,
        height=512,
        num_inference_steps=20,
        guidance_scale=7.5,
    ).images[0]
    last_lora = repo_name
    gc.collect()
    print("image: ", image)

    image_base64 = image_to_base64(image)

    return image_base64



def shuffle_gallery(sdxl_loras):
    order = "likes"
    sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True)
    return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery

def swap_gallery(order, sdxl_loras):
    if(order == "random"):
        return shuffle_gallery(sdxl_loras)
    else:
        sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True)
        return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery


# App code
def hallo(full_string):
    print("✅ Hallo >>>>>>>>>")
    print("string: ", full_string)

    parts = full_string.split("+")
    text_part = parts[0].strip()
    number_part = parts[1].strip()
    idx_lora = int(number_part)
    token_part = parts[2].strip()

    if(token_part == MY_TOKEN):
        img_result = run_lora_light(prompt=text_part, negative="No naked bodies", lora_scale=0.8, selected_index=idx_lora, sdxl_loras=sdxl_loras_raw)
        return img_result
    else:
        img_result = {"message": "Failed request", "prompt": text_part}
        return img_result

    

def hadet(x):
    return f"Hadet, {x}"



with gr.Blocks(css="custom.css") as demo:
    gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
    # <<<<<<< new additions
    t = gr.Textbox()
    b = gr.Button("Hallo")
    a = gr.Button("Hadet")
    o = gr.Textbox()
    b.click(hallo, inputs=[t], outputs=[o])
    a.click(hadet, inputs=[t], outputs=[o])
    #  new additions >>>>>>>>>

    title = gr.HTML(
        """<h1>Algorithmic Dream Interpreter | Art Generator</h1>""",
        elem_id="title",
    )
    selected_state = gr.State()
    print("✅ selected_state: ", selected_state)
    with gr.Row():
        with gr.Box(elem_id="gallery_box"):
            order_gallery = gr.Radio(choices=[
                                     "random", "likes"], value="random", label="Order by", elem_id="order_radio")
            gallery = gr.Gallery(
                #value=[(item["image"], item["title"]) for item in sdxl_loras],
                label="SDXL LoRA Gallery",
                allow_preview=False,
                columns=4,
                elem_id="gallery",
                show_share_button=False,
                # height=784
                height=384
            )

        with gr.Column():
            prompt_title = gr.Markdown(
                value="### Click on a LoRA in the gallery to select it",
                visible=True,
                elem_id="selected_lora",
            )
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1,
                                    placeholder="Type a prompt after selecting a LoRA", elem_id="prompt")
                button = gr.Button("Run", elem_id="run_button")
            with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
                community_icon = gr.HTML(community_icon_html)
                loading_icon = gr.HTML(loading_icon_html)
                share_button = gr.Button(
                    "Share to community", elem_id="share-btn")
            result = gr.Image(
                interactive=False, label="Generated Image", elem_id="result-image"
            )
            with gr.Accordion("Advanced options", open=False):
                negative = gr.Textbox(label="Negative Prompt")
                weight = gr.Slider(
                    0, 10, value=0.8, step=0.1, label="LoRA weight")
                
    gallery.select(
        fn=update_selection,
        inputs=[gr_sdxl_loras],

        outputs=[prompt_title, prompt, prompt,
                 selected_state],
        queue=False,
        show_progress=False
    )

    
    order_gallery.change(
        fn=swap_gallery,
        inputs=[order_gallery, gr_sdxl_loras],
        outputs=[gallery, gr_sdxl_loras],
        queue=False
    )

    
    button.click(
        fn=check_selected,
        inputs=[selected_state],
        queue=False,
        show_progress=False
    ).success(
        fn=run_lora,
        inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras],
        outputs=[result, share_group],
    )

    # share_button.click(None, [], [], _js=share_js)

    demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[
              gallery, gr_sdxl_loras], queue=False)
    

# <<<<<<< new additions
ifa = gr.Interface(lambda: None, inputs=[t], outputs=[o])
demo.input_components = ifa.input_components
demo.output_components = ifa.output_components
demo.examples = None
demo.predict_durations = [] 
# new additions >>>>>>>>>

# demo.queue(max_size=20)
demo.launch()