File size: 40,352 Bytes
f887c3b
 
b8a0ce6
f887c3b
b3d0315
 
b8a0ce6
35baab0
1998bf9
21d9d90
35baab0
 
 
 
1998bf9
f887c3b
1998bf9
 
 
b8a0ce6
 
e3e08aa
e5d56ba
e222380
e5d56ba
e222380
e5d56ba
e222380
e5d56ba
e222380
e3e08aa
 
 
 
 
 
 
 
 
 
e5d56ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a0ce6
 
 
b58538e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537fc2
 
b58538e
1537fc2
b58538e
 
 
 
 
 
 
 
 
 
 
 
f887c3b
b8a0ce6
1998bf9
f887c3b
b8a0ce6
 
 
5cb1e0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe914d
5cb1e0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a0ce6
77b3744
 
b8a0ce6
 
 
 
 
f887c3b
b8a0ce6
 
 
 
 
 
 
 
 
d9cf01d
1998bf9
d9cf01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26db7b2
d9cf01d
 
 
 
 
 
 
 
 
 
 
 
 
1998bf9
d9cf01d
 
 
 
 
b883b46
d9cf01d
70e53f6
d9cf01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70e53f6
f887c3b
d9cf01d
 
 
70e53f6
d9cf01d
 
 
 
 
 
7e90033
 
 
bad2aa8
cf740ad
 
7e90033
cf740ad
 
 
7e90033
 
8629493
4ef5948
8629493
 
 
 
 
 
 
 
 
 
8c3d5de
4ef5948
8629493
 
b8a0ce6
 
 
 
 
8c3d5de
4ef5948
b8a0ce6
7e90033
8629493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75218ae
7e90033
b8a0ce6
7e90033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a0ce6
7e90033
b8a0ce6
7e90033
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e90033
b8a0ce6
 
7e90033
 
 
b8a0ce6
 
7e90033
b8a0ce6
 
7e90033
7acc3c0
7e90033
 
 
 
 
 
b8a0ce6
7e90033
b8a0ce6
 
 
 
 
 
 
 
 
 
7e90033
 
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
 
7e90033
b8a0ce6
 
7e90033
b8a0ce6
 
 
7e90033
 
b8a0ce6
 
 
 
 
 
 
 
 
 
 
9418d97
 
 
b8a0ce6
7e90033
f887c3b
7e90033
35baab0
1998bf9
b8a0ce6
35baab0
1998bf9
35baab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a0ce6
35baab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a0ce6
35baab0
 
 
 
 
 
 
 
b8a0ce6
1537fc2
b8a0ce6
b58538e
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b502be
b3d0315
 
b8a0ce6
8d3bc4d
940f97c
 
 
 
 
 
 
 
 
8d3bc4d
 
b8a0ce6
f887c3b
1998bf9
b8a0ce6
fa62f4d
b8a0ce6
 
 
 
1998bf9
b8a0ce6
1998bf9
 
 
 
 
b8a0ce6
1998bf9
b8a0ce6
 
 
 
 
 
 
 
 
a6e97ea
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b58538e
35baab0
 
 
 
 
b8a0ce6
 
 
 
 
 
 
 
 
 
 
35baab0
b8a0ce6
adbeedd
 
 
b3d0315
661d369
 
 
 
 
 
 
 
 
 
b3d0315
661d369
 
 
 
 
b3d0315
661d369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0d268e
661d369
 
 
 
d0d268e
 
bb44f5d
 
 
 
 
d0d268e
bb44f5d
 
 
 
 
d0d268e
940f97c
df060ae
4e3b4cd
ba1206a
b3d0315
df060ae
b3d0315
1a8524b
8d3bc4d
b3d0315
d0d268e
 
 
b3d0315
d0d268e
 
 
 
1a8524b
b3d0315
940f97c
1998bf9
 
 
e8dd5e9
1998bf9
e8dd5e9
1998bf9
e8dd5e9
1998bf9
e8dd5e9
1998bf9
 
eb27961
b8a0ce6
 
 
 
 
 
3db8ccb
 
 
 
 
 
 
eb27961
8b8350c
a91640a
b68e368
 
a91640a
 
8b8350c
 
eb27961
8b8350c
eb27961
 
 
8b8350c
3db8ccb
b8a0ce6
 
 
eb27961
b8a0ce6
 
 
 
 
ec4eb40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a0ce6
 
1998bf9
b8a0ce6
 
 
1998bf9
b8a0ce6
 
 
26db7b2
b8a0ce6
35baab0
 
1998bf9
b8a0ce6
 
26db7b2
 
 
 
 
 
b8a0ce6
ec4eb40
 
 
 
 
26db7b2
1998bf9
 
 
 
 
1537fc2
f887c3b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
import gradio as gr
import pandas as pd
import json
import plotly.express as px
import requests
import os

from textblob.download_corpora import download_all
from highlight_util import highlight_adjectives
from send_file import send_to_backend

# 下载TextBlob所需数据(只需运行一次)
download_all()

def on_confirm(task_type_radio,dataset_radio, num_parts_dropdown, perspective_radio, division_method_radio):
    num_parts = num_parts_dropdown
    method = "QS" if division_method_radio == "Equal Frequency Partitioning" else "EI"    
    base_path = f"./dataset/{task_type_radio}/{dataset_radio}"
    analysis_result,_ = load_analysis_report(task_type_radio,dataset_radio, num_parts_dropdown, perspective_radio, division_method_radio)
    
    # 根据perspective选择读取对应的文件
    if task_type_radio=="Api Recommendation":
        if "Tokens" in perspective_radio and "Recall" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/recall/token_counts_{method}.csv")
        elif "Tokens" in perspective_radio and "F1" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/f1/token_counts_{method}.csv")
        elif "Lines" in perspective_radio and "Recall" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/recall/line_counts_{method}.csv")
        elif "Lines" in perspective_radio and "f1" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/f1/line_counts_{method}.csv")
    elif task_type_radio=="Code Completion":
        if "Tokens" in perspective_radio :
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/token_counts_{method}.csv")
        elif "Lines" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/line_counts_{method}.csv")
    elif task_type_radio=="Test Generation":
        if "Tokens" in perspective_radio :
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/token_counts_{method}.csv")
        elif "Lines" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/line_counts_{method}.csv")


    else:
        if "Tokens" in perspective_radio :
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/token_counts_{method}.csv")
        elif "Lines" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/line_counts_{method}.csv")
        elif "Complexity" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/CC_{method}.csv")
        elif "Problem Types" in perspective_radio:
            df = pd.read_csv(f"{base_path}/cata_result.csv")
        
        # 加载分析报告
        # AI分析列
        # df["Analysis"] = df["Model"].map(lambda m: analysis_result.get(m, "No analysis provided."))
        df["Analysis"] = df["Model"].map(
            lambda m: highlight_adjectives(analysis_result.get(m, "No analysis provided."))
        )
    return df

# 生成 CSS 样式
def generate_css(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium, show_low):
    css = """
    #dataframe th {
        background-color: #f2f2f2
    }
    """
    colors = ["#e6f7ff", "#ffeecc", "#e6ffe6", "#ffe6e6"]
    categories = [line_counts, token_counts, cyclomatic_complexity]
    category_index = 0
    column_index = 1

    for category in categories:
        if category:
            if show_high:
                css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
                column_index += 1
            if show_medium:
                css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
                column_index += 1
            if show_low:
                css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
                column_index += 1
        category_index += 1

    # 为 Problem Type 相关的三个子列设置固定颜色
    if problem_type:
        problem_type_color = "#d4f0fc"  # 你可以选择任何你喜欢的颜色
        css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {problem_type_color}; }}\n"
        css += f"#dataframe td:nth-child({column_index + 2}) {{ background-color: {problem_type_color}; }}\n"
        css += f"#dataframe td:nth-child({column_index + 3}) {{ background-color: {problem_type_color}; }}\n"

    # 隐藏 "data" 标识
    css += """
    .gradio-container .dataframe-container::before {
        content: none !important;
    }
    """

    return css

# AI分析
def load_analysis_report(task_type_radio,dataset_radio, num_parts_dropdown, perspective_radio, division_method_radio):

    num_parts = num_parts_dropdown
    method = "QS" if division_method_radio == "Equal Frequency Partitioning" else "EI"

    # # 根据perspective确定文件路径
    # if "Tokens" in perspective_radio:
    #     perspective = "token_counts"
    # elif "Lines" in perspective_radio:
    #     perspective = "line_counts"
    # elif "Complexity" in perspective_radio:
    #     perspective = "CC"
    # else:
    #     perspective = "problem_type"

    # base_path = f"./llm_insight/{task_type_radio}"

    # if perspective == "problem_type":
    #     report_file = f"{base_path}/{dataset_radio}/{perspective}_report.json"
    #     recommendation_file = f"{base_path}/{dataset_radio}/{perspective}_recommendation.json"
    # else:
    #     report_file = f"{base_path}/{dataset_radio}/{num_parts}/{method}/{perspective}_report.json"
    #     recommendation_file = f"{base_path}/{dataset_radio}/{num_parts}/{method}/{perspective}_recommendation.json"
    base_path = f"./llm_insight/{task_type_radio}"
    if task_type_radio=="Code Generation":
        # 根据perspective确定文件路径
        if "Tokens" in perspective_radio:
            perspective = "token_counts"
        elif "Lines" in perspective_radio:
            perspective = "line_counts"
        elif "Complexity" in perspective_radio:
            perspective = "CC"
        else:
            perspective = "problem_type"
    
        if perspective == "problem_type":
            report_file = f"{base_path}/{dataset_radio}/{perspective}_report.json"
            recommendation_file = f"{base_path}/{dataset_radio}/{perspective}_recommendation.json"
        else:
            report_file = f"{base_path}/{dataset_radio}/{num_parts}/{method}/{perspective}_report.json"
            recommendation_file = f"{base_path}/{dataset_radio}/{num_parts}/{method}/{perspective}_recommendation.json"
    else:
        report_file = f"{base_path}/{dataset_radio}/report.json"
        recommendation_file = f"{base_path}/{dataset_radio}/recommendation.json"
    try:
        with open(report_file, 'r', encoding='utf-8') as f:
            analysis_result = json.load(f)
    except Exception as e:
        analysis_result = f"[Error] error load analysis report: {e}"

    try:
        with open(recommendation_file, 'r', encoding='utf-8') as f:
            recommendation_result = json.load(f)
    except Exception as e:
        recommendation_result = f"[Error] error load model recommendation: {e}"

    return (analysis_result,recommendation_result)

# 可视化
# def plot_visualization(task_type_radio,dataset_radio, perspective_radio, num_parts, plot_type):

#     base_path = f"./dataset/{task_type_radio}/{dataset_radio}"

#     if "Tokens" in perspective_radio:
#         file_path = f'{base_path}/{num_parts}/QS/token_counts_QS.csv'
#     elif "Lines" in perspective_radio:
#         file_path = f'{base_path}/{num_parts}/QS/line_counts_QS.csv'
#     elif "Complexity" in perspective_radio:
#         file_path = f'{base_path}/{num_parts}/QS/CC_QS.csv'
#     else:  # Problem Types
#         file_path = f'{base_path}/cata_result.csv'

#     df = pd.read_csv(file_path)
#     df.set_index('Model', inplace=True)
#     df_transposed = df.T

#     if plot_type == "Line Chart":
#         fig = px.line(df_transposed, 
#                      x=df_transposed.index, 
#                      y=df_transposed.columns,
#                      title='Model Performance Across Different Subsets',
#                      labels={'value': 'Evaluation Score', 'index': 'Subsets'},
#                      color_discrete_sequence=px.colors.qualitative.Plotly)
#         fig.update_traces(hovertemplate='%{y}')
#     elif plot_type == "Radar Chart":  # Radar Chart
#         # 重新组织数据为雷达图所需格式
#         radar_data = []
#         for model in df.index:
#             for subset, score in df.loc[model].items():
#                 radar_data.append({
#                     'Model': model,
#                     'Subset': subset,
#                     'Score': score
#                 })
        
#         radar_df = pd.DataFrame(radar_data)
        
#         colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
        
#         # 创建雷达图
#         fig = px.line_polar(radar_df, 
#                            r='Score',
#                            theta='Subset',
#                            color='Model',
#                            line_close=True,
#                            color_discrete_sequence=colors,
#                            title='Model Performance Radar Chart')
        
#         # 自定义每个模型的线条样式
#         for i, trace in enumerate(fig.data):
#             trace.update(
#                 fill=None,  # 移除填充
#                 line=dict(
#                     width=2,
#                     dash='solid' if i % 2 == 0 else 'dash',  # 交替使用实线和虚线
#                 )
#             )
        
#         # 优化雷达图的显示
#         fig.update_layout(
#             polar=dict(
#                 radialaxis=dict(
#                     visible=True,
#                     range=[0, 100],
#                     showline=True,
#                     linewidth=1,
#                     gridcolor='lightgrey'
#                 ),
#                 angularaxis=dict(
#                     showline=True,
#                     linewidth=1,
#                     gridcolor='lightgrey'
#                 )
#             ),
#             showlegend=True,
#             legend=dict(
#                 yanchor="middle",  # 垂直居中
#                 y=0.5,
#                 xanchor="left",
#                 x=1.2,  # 将图例移到雷达图右侧
#                 bgcolor="rgba(255, 255, 255, 0.8)",  # 半透明白色背景
#                 bordercolor="lightgrey",  # 添加边框
#                 borderwidth=1
#             ),
#             margin=dict(r=150),  # 增加右侧边距,为图例留出空间
#             paper_bgcolor='white'
#         )
#     else:  # Heatmap
#         # 创建热力图
#         fig = px.imshow(df_transposed,
#                        labels=dict(x="Model", y="Subset", color="Score"),
#                        color_continuous_scale="RdYlBu_r",  # 使用科研风格配色:红-黄-蓝
#                        aspect="auto",  # 自动调整宽高比
#                        title="Model Performance Heatmap")
        
#         # 优化热力图显示
#         fig.update_layout(
#             title=dict(
#                 text='Model Performance Distribution Across Subsets',
#                 x=0.5,
#                 y=0.95,
#                 xanchor='center',
#                 yanchor='top',
#                 font=dict(size=14)
#             ),
#             xaxis=dict(
#                 title="Model",
#                 tickangle=45,  # 斜着显示模型名称
#                 tickfont=dict(size=10),
#                 side="bottom"
#             ),
#             yaxis=dict(
#                 title="Subset",
#                 tickfont=dict(size=10)
#             ),
#             coloraxis=dict(
#                 colorbar=dict(
#                     title="Score",
#                     titleside="right",
#                     tickfont=dict(size=10),
#                     titlefont=dict(size=12),
#                     len=0.9,  # 色条长度
#                 )
#             ),
#             margin=dict(t=80, r=100, b=80, l=80),  # 调整边距
#             paper_bgcolor='white',
#             plot_bgcolor='white'
#         )

#         # 添加具体数值标注
#         annotations = []
#         for i in range(len(df_transposed.index)):
#             for j in range(len(df_transposed.columns)):
#                 annotations.append(
#                     dict(
#                         x=j,
#                         y=i,
#                         text=f"{df_transposed.iloc[i, j]:.1f}",
#                         showarrow=False,
#                         font=dict(size=9, color='black')
#                     )
#                 )
#         fig.update_layout(annotations=annotations)

#     return fig

def plot_visualization(task_type_radio,dataset_radio, num_parts_dropdown, perspective_radio, division_method_radio,plot_type):

    # base_path = f"./dataset/{task_type_radio}/{dataset_radio}"

    # if "Tokens" in perspective_radio:
    #     file_path = f'{base_path}/{num_parts}/QS/token_counts_QS.csv'
    # elif "Lines" in perspective_radio:
    #     file_path = f'{base_path}/{num_parts}/QS/line_counts_QS.csv'
    # elif "Complexity" in perspective_radio:
    #     file_path = f'{base_path}/{num_parts}/QS/CC_QS.csv'
    # else:  # Problem Types
    #     file_path = f'{base_path}/cata_result.csv'
    num_parts = num_parts_dropdown
    method = "QS" if division_method_radio == "Equal Frequency Partitioning" else "EI"    
    base_path = f"./dataset/{task_type_radio}/{dataset_radio}"
    analysis_result,_ = load_analysis_report(task_type_radio,dataset_radio, num_parts_dropdown, perspective_radio, division_method_radio)
    
    # 根据perspective选择读取对应的文件
    if task_type_radio=="Api Recommendation":
        if "Tokens" in perspective_radio and "Recall" in perspective_radio:
            print(f"{base_path}/{num_parts}/{method}/recall/token_counts_{method}.csv")
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/recall/token_counts_{method}.csv")
            print(df)
        elif "Tokens" in perspective_radio and "F1" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/f1/token_counts_{method}.csv")
        elif "Lines" in perspective_radio and "Recall" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/recall/line_counts_{method}.csv")
        elif "Lines" in perspective_radio and "f1" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/f1/line_counts_{method}.csv")
    elif task_type_radio=="Code Completion":
        if "Tokens" in perspective_radio :
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/token_counts_{method}.csv")
        elif "Lines" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/line_counts_{method}.csv")
    elif task_type_radio=="Test Generation":
        if "Tokens" in perspective_radio :
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/token_counts_{method}.csv")
        elif "Lines" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/line_counts_{method}.csv")
    

    else:
        if "Tokens" in perspective_radio :
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/token_counts_{method}.csv")
            print(df)
        elif "Lines" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/line_counts_{method}.csv")
        elif "Complexity" in perspective_radio:
            df = pd.read_csv(f"{base_path}/{num_parts}/{method}/CC_{method}.csv")
        elif "Problem Types" in perspective_radio:
            df = pd.read_csv(f"{base_path}/cata_result.csv")



    if task_type_radio == "Code Generation":
        df.set_index('Model', inplace=True)
        df_transposed = df.T
        model_column_name = 'Model'  # Store the column name for later use
    else:
        df.set_index('Models', inplace=True)
        df_transposed = df.T
        model_column_name = 'Models'  # Store the column name for later use
    
    if plot_type == "Line Chart" and task_type_radio=="Api Recommendation":
        df_melted = df_transposed.reset_index().melt(
            id_vars="index",              # 保留subset列(原列名)
            var_name=model_column_name,   # 模型列名
            value_name="Score"            # 分数列
        )
    
        fig = px.line(df_transposed, 
                     x=df_transposed.index, 
                     y=df_transposed.columns,
                     title='Model Performance Across Different Subsets',
                     labels={'value': 'Evaluation Score', 'index': 'Subsets'},
                     color_discrete_sequence=px.colors.qualitative.Plotly
        )
        fig.update_traces(hovertemplate='%{y}')
    if plot_type == "Line Chart" and task_type_radio!="Api Recommendation":
        fig = px.line(df_transposed, 
                     x=df_transposed.index, 
                     y=df_transposed.columns,
                     title='Model Performance Across Different Subsets',
                     labels={'value': 'Evaluation Score', 'index': 'Subsets'},
                     color_discrete_sequence=px.colors.qualitative.Plotly
        )
        fig.update_traces(hovertemplate='%{y}')
        
    if plot_type == "Radar Chart":
        # Reorganize data for radar chart
        radar_data = []
        for model in df.index:
            for subset, score in df.loc[model].items():
                radar_data.append({
                    model_column_name: model,  # Use the stored column name
                    'Subset': subset,
                    'Score': score
                })
        
        radar_df = pd.DataFrame(radar_data)
        
        colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', 
                  '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
        
        # Create radar chart
        fig = px.line_polar(radar_df, 
                           r='Score',
                           theta='Subset',
                           color=model_column_name,  # Use the stored column name
                           line_close=True,
                           color_discrete_sequence=colors,
                           title='Model Performance Radar Chart')
        
        # Customize line styles for each model
        for i, trace in enumerate(fig.data):
            trace.update(
                fill=None,  # Remove fill
                line=dict(
                    width=2,
                    dash='solid' if i % 2 == 0 else 'dash',  # Alternate solid and dashed lines
                )
            )
        
        # Optimize radar chart display
        fig.update_layout(
            polar=dict(
                radialaxis=dict(
                    visible=True,
                    range=[0, 100],
                    showline=True,
                    linewidth=1,
                    gridcolor='lightgrey'
                ),
                angularaxis=dict(
                    showline=True,
                    linewidth=1,
                    gridcolor='lightgrey'
                )
            ),
            showlegend=True,
            legend=dict(
                yanchor="middle",
                y=0.5,
                xanchor="left",
                x=1.2,
                bgcolor="rgba(255, 255, 255, 0.8)",
                bordercolor="lightgrey",
                borderwidth=1
            ),
            margin=dict(r=150),
            paper_bgcolor='white'
        )
        
        
    if plot_type == "Radar Chart":
        # Reorganize data for radar chart
        radar_data = []
        for model in df.index:
            for subset, score in df.loc[model].items():
                radar_data.append({
                    model_column_name: model,  # Use the stored column name
                    'Subset': subset,
                    'Score': score
                })
        
        radar_df = pd.DataFrame(radar_data)
        
        colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', 
                  '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
        
        # Create radar chart
        fig = px.line_polar(radar_df, 
                           r='Score',
                           theta='Subset',
                           color=model_column_name,  # Use the stored column name
                           line_close=True,
                           color_discrete_sequence=colors,
                           title='Model Performance Radar Chart')
        
        # Customize line styles for each model
        for i, trace in enumerate(fig.data):
            trace.update(
                fill=None,  # Remove fill
                line=dict(
                    width=2,
                    dash='solid' if i % 2 == 0 else 'dash',  # Alternate solid and dashed lines
                )
            )
        
        # Optimize radar chart display
        fig.update_layout(
            polar=dict(
                radialaxis=dict(
                    visible=True,
                    range=[0, 100],
                    showline=True,
                    linewidth=1,
                    gridcolor='lightgrey'
                ),
                angularaxis=dict(
                    showline=True,
                    linewidth=1,
                    gridcolor='lightgrey'
                )
            ),
            showlegend=True,
            legend=dict(
                yanchor="middle",
                y=0.5,
                xanchor="left",
                x=1.2,
                bgcolor="rgba(255, 255, 255, 0.8)",
                bordercolor="lightgrey",
                borderwidth=1
            ),
            margin=dict(r=150),
            paper_bgcolor='white'
        )
        
    if plot_type == "Heatmap":
        # Create heatmap
        fig = px.imshow(df_transposed,
                       labels=dict(x=model_column_name, y="Subset", color="Score"),  # Use stored column name
                       color_continuous_scale="RdYlBu_r",
                       aspect="auto",
                       title="Model Performance Heatmap")
        
        # Optimize heatmap display
        fig.update_layout(
            title=dict(
                text='Model Performance Distribution Across Subsets',
                x=0.5,
                y=0.95,
                xanchor='center',
                yanchor='top',
                font=dict(size=14)
            ),
            xaxis=dict(
                title=model_column_name,  # Use stored column name
                tickangle=45,
                tickfont=dict(size=10),
                side="bottom"
            ),
            yaxis=dict(
                title="Subset",
                tickfont=dict(size=10)
            ),
            coloraxis=dict(
                colorbar=dict(
                    title="Score",
                    titleside="right",
                    tickfont=dict(size=10),
                    titlefont=dict(size=12),
                    len=0.9,
                )
            ),
            margin=dict(t=80, r=100, b=80, l=80),
            paper_bgcolor='white',
            plot_bgcolor='white'
        )
    
        # Add value annotations
        annotations = []
        for i in range(len(df_transposed.index)):
            for j in range(len(df_transposed.columns)):
                annotations.append(
                    dict(
                        x=j,
                        y=i,
                        text=f"{df_transposed.iloc[i, j]:.1f}",
                        showarrow=False,
                        font=dict(size=9, color='black')
                    )


                )
        fig.update_layout(annotations=annotations)
    
    return fig
    
# 桑基图展示推荐模型
def plot_recommendation_sankey(task_type_radio,dataset_radio, num_parts_dropdown, perspective_radio, division_method_radio):
    import plotly.graph_objects as go
    from plotly.colors import sample_colorscale
    _, recommendation_result = load_analysis_report(task_type_radio,dataset_radio, num_parts_dropdown, perspective_radio, division_method_radio)
    
    # 定义节点层级和颜色方案
    levels = ['Model Recommendation', 'Scenario', 'Model Family', 'Specific Model']
    color_scale = "RdYlBu_r"
    
    # 节点和连接数据
    node_labels = [levels[0]]  # 根节点
    customdata = ["Root node"]
    sources, targets, values = [], [], []
    
    # 节点索引跟踪
    node_indices = {levels[0]: 0}
    current_idx = 1
    
    # 处理推荐列表结构 {"场景1": [ {模型1:原因1}, {模型2:原因2} ], ...}
    for scenario, model_dicts in recommendation_result.items():
        # 添加场景节点
        scenario_label = " ".join(scenario.split()[:3]) + ("..." if len(scenario.split()) > 3 else "")
        node_labels.append(scenario_label)
        customdata.append(scenario)
        node_indices[f"scenario_{scenario}"] = current_idx
        current_idx += 1
        
        # 根节点 -> 场景节点连接
        sources.append(0)
        targets.append(node_indices[f"scenario_{scenario}"])
        values.append(10)
        
        # 处理模型列表 [ {模型1:原因1}, {模型2:原因2} ]
        for model_dict in model_dicts:
            for model, reason in model_dict.items():
                # 提取模型系列 (如"GPT-4" -> "GPT")
                family = model.split('-')[0].split('_')[0]
                
                # 添加模型系列节点 (如果不存在)
                if f"family_{family}" not in node_indices:
                    node_labels.append(family)
                    customdata.append(f"Model family: {family}")
                    node_indices[f"family_{family}"] = current_idx
                    current_idx += 1
                
                # 场景 -> 模型系列连接
                sources.append(node_indices[f"scenario_{scenario}"])
                targets.append(node_indices[f"family_{family}"])
                values.append(8)
                
                # 添加具体模型节点 (如果不存在)
                if f"model_{model}" not in node_indices:
                    node_labels.append(model)
                    customdata.append(f"<b>{model}</b><br>{reason}")
                    node_indices[f"model_{model}"] = current_idx
                    current_idx += 1
                
                # 模型系列 -> 具体模型连接
                sources.append(node_indices[f"family_{family}"])
                targets.append(node_indices[f"model_{model}"])
                values.append(5)
    
    # 生成颜色 (确保颜色数量匹配节点数量)
    node_colors = ["#2c7bb6"]  # 根节点颜色
    node_colors += sample_colorscale(color_scale, [n/(len(node_labels)-1) for n in range(1, len(node_labels))])
    
    # 创建桑基图
    fig = go.Figure(go.Sankey(
        arrangement="perpendicular",
        node=dict(
            pad=20,
            thickness=15,
            line=dict(color="rgba(0,0,0,0.3)", width=0.2),
            label=node_labels,
            color=node_colors,
            hovertemplate='%{label}<extra></extra>',
            x=[0] + [0.33]*len([n for n in node_indices if n.startswith('scenario_')]) 
                 + [0.66]*len([n for n in node_indices if n.startswith('family_')])
                 + [1.0]*len([n for n in node_indices if n.startswith('model_')]),
        ),
        link=dict(
            source=sources,
            target=targets,
            value=values,
            color="rgba(180,180,180,0.4)",
            customdata=[customdata[t] for t in targets],
            hovertemplate='%{customdata}<extra></extra>'
        )
    ))
    
    fig.update_layout(
        title_text="<b>Model Recommendation Flow</b>",
        font_size=11,
        height=700,
        margin=dict(t=80, l=20, r=20, b=20)
    )
    
    return fig

### Gradio代码部分 ### 

# 自定义 CSS 样式
custom_css = """
<style>
    body {
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        background-color: #f9f9f9;
    }
    .gr-label {
        font-size: 15px;
    }
    .gr-button-primary {
        background-color: #4CAF50;
        color: white;
        border-radius: 8px;
    }
    .gr-tabs > .tab-nav {
        background-color: #e0e0e0;
        border-bottom: 2px solid #ccc;
    }
    .gr-tabs > .tab-nav button.selected {
        background-color: #ffffff !important;
        border-bottom: 2px solid #4CAF50;
    }
    .gr-panel {
        padding: 20px;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        background-color: #fff;
    }
    .markdown-title {
        font-size: 1.5em;
        font-weight: bold;
        margin-bottom: 10px;
    }
    .analysis-box {
        background-color: #f1f8ff;
        padding: 20px;
        border-left: 5px solid #4CAF50;
        border-radius: 6px;
        margin-top: 10px;
    }
    .recommendation-box {
        background-color: #fff3cd;
        padding: 20px;
        border-left: 5px solid #ff9800;
        border-radius: 6px;
        margin-top: 10px;
    }
</style>
"""
SERVER_URL = "http://10.249.190.53:8000/upload"


# 构建界面

def update_dataset(task):
    if task == "Code Generation":
        return gr.update(choices=["HumanEval", "MBPP"])
    elif task== "Code Completion":
        return gr.update(choices=["ComplexCodeEval-Python","ComplexCodeEval-Java"])
    elif task == "Api Recommendation":
        return gr.update(choices=["ComplexCodeEval-Python","ComplexCodeEval-Java"])
    elif task == "Test Generation":
        return gr.update(choices=["ComplexCodeEval-Python","ComplexCodeEval-Java"])


with gr.Blocks(css=custom_css) as iface:
    gr.HTML("""
    <div style='text-align:center; padding:5px;'>
        <h1>Multi-view Code LLM Leaderboard</h1>
        <p>Multi-view Leaderboard: Towards Evaluating the Code Intelligence of LLMs From Multiple Views</p>
    </div>
    """)

    with gr.Row():
        # 配置相关
        with gr.Column(scale=1):
            task_type_radio = gr.Radio(
                ["Code Generation", "Code Completion", "Api Recommendation", "Test Generation"],
                label="Select Task Type",
                value="Code Generation"
            )
            dataset_radio = gr.Radio(
                ["HumanEval", "MBPP",'ComplexCodeEval'],
                label="Select a dataset",
                value="HumanEval"
            )
            num_parts_slider = gr.Slider(
                minimum=3,
                maximum=8,
                step=1,
                label="Choose the Number of Subsets",
                value=3
            )
            
            # 将多个checkbox改为一个radio
            perspective_radio = gr.Radio(
                ["I - Num of Tokens in Problem Desc",
                 "II - Num of Lines in Problem Desc",
                 "III - Complexity of Reference Code",
                 "IV - Problem Types"],
                label="Choose Perspective",
                value="I - Num of Tokens in Problem Desc"
            )

            # 统一的division method radio
            division_method_radio = gr.Radio(
                ["Equal Frequency Partitioning", "Equal Interval Partitioning"],
                label="Choose the Division Method",
                visible=True
            )

            confirm_btn = gr.Button("Confirm", variant="primary")

        # 核心展示
        with gr.Column(scale=2):
            with gr.Tabs():
                # 表格
                with gr.TabItem("Ranking Table"):
                    data_table = gr.Dataframe(headers=["Model", "Score","Analysis"],
                                              interactive=True,
                                              datatype="html",  # 指定第三列为HTML
                                              render=True, # 启用HTML渲染
                                              )
                # 可视化
                with gr.TabItem("Visualization"):
                    plot_type = gr.Radio(
                        choices=["Line Chart", "Radar Chart","Heatmap"],
                        label="Select Plot Type",
                        value="Line Chart"
                    )
                    chart = gr.Plot()
                # AI分析
                with gr.TabItem("Model selection suggestions"):
                    with gr.Column():
                        # gr.Markdown("<h2 class='markdown-title'>🎯 Model Recommendation</h2>")
                        recommendation_plot = gr.Plot()



                        
                # #*********************上传文件界面布局******************        
                # with gr.TabItem("Upload inference result"):
                #     print("new!!!!!!!!!!!!!!!!")
                #     with gr.Column(scale=1):
                #         upload_file = gr.File(
                #             label="📤 上传JSON结果文件",
                #             type="filepath",
                #             file_types=[".json"],
                #             height=100
                #         )
            
                #         task_choice = gr.Radio(
                #             label="Select Evaluation Task",
                #             choices=["Code Generation", "Code Completion", "Api Recommendation", "Test Generation"],
                #             value="Code Generation"
                #         )
            
                #         dataset_choice = gr.Radio(
                #             ["HumanEval", "MBPP"],
                #             label="Select a dataset",
                #             value="HumanEval",
                #             interactive=True
                #         )
                #         task_choice.change(fn=update_dataset, inputs=task_choice, outputs=dataset_choice)
                #     with gr.Column(scale=2):
                #         # 状态显示区域
                #         status = gr.Textbox(
                #             label="📊 处理状态",
                #             interactive=False,
                #             lines=4,
                #             placeholder="等待文件上传..."
                #         )
                        
                #         # 操作按钮区域
                #         with gr.Row():
                #             submit_btn = gr.Button("🚀 提交到服务器", variant="primary")
                #             clear_btn = gr.Button("🧹 清除所有")
                        
                        # 按钮动作
                        # submit_btn.click(
                        #     fn=send_to_backend,
                        #     inputs=[upload_file, task_choice, dataset_choice],
                        #     outputs=status
                        # )
                        
                        # clear_btn.click(
                        #     fn=lambda: (None, "Code Generation", "HumanEval", "状态已重置"),
                        #     inputs=None,
                        #     outputs=[upload_file, task_choice, dataset_choice, status]
                        # )



                            

            
                        
            
                        
                    
            
                    # with gr.Column(scale=2):
                    #     status = gr.Textbox(label="Status")
                    #     submit_btn = gr.Button("Send to Server")
            
                    #     submit_btn.click(fn=send_to_backend,
                    #                      inputs=[upload_file,task_choice, dataset_choice],
                    #                      outputs=status
                    #                     )
    


    # 根据任务类型切换数据集
    def update_dataset_options(task_type):
        if task_type == "Code Generation":
            return gr.update(choices=["HumanEval", "MBPP"])
        elif task_type == "Code Completion":
            return gr.update(choices=["ComplexCodeEval-Python","ComplexCodeEval-Java"])
        elif task_type == "Api Recommendation":
            return gr.update(choices=["ComplexCodeEval-Python","ComplexCodeEval-Java"])
        elif task_type == "Test Generation":
            return gr.update(choices=["ComplexCodeEval-Python","ComplexCodeEval-Java"])

    # 根据数据集切换拆分角度
    def update_perspective_options(task,dataset):
        if dataset == "MBPP":
            return gr.update(choices=[
                "I - Num of Tokens in Problem Desc",
                "III - Complexity of Reference Code",
                "IV - Problem Types"
            ])
        elif dataset =="HumanEval":
            return gr.update(choices=[
                "I - Num of Tokens in Problem Desc",
                "II - Num of Lines in Problem Desc",
                "III - Complexity of Reference Code",
                "IV - Problem Types"
            ])
        elif task == "Api Recommendation":
            return gr.update(choices=[
                "I - Num of Tokens in Problem Desc(Eval Metric:Recall)",
                "II - Num of Tokens in Problem Desc(Eval Metric:F1)",
                "III - Num of Lines in Problem Desc(Eval Metric:Recall)",
                "IV - Num of Lines in Problem Desc(Eval Metric:f1)"
        
                
            ])
        elif task == "Code Completion" or "Test Generation":
            return gr.update(choices=[
               "I - Num of Tokens in Problem Desc(Eval Metric:ES)",
               "II - Num of Lines in Problem Desc(Eval Metric:ES)"

            ])
        

    dataset_radio.change(
        fn=update_perspective_options,
        inputs=[task_type_radio,dataset_radio],
        outputs=perspective_radio
    )


    # 绑定事件
    # confirm_btn.click(
    #     fn=on_confirm,
    #     inputs=[task_type_radio,dataset_radio, num_parts_slider, perspective_radio, division_method_radio],
    #     outputs=data_table
    # ).then(
    #     fn=load_analysis_report,
    #     inputs=[task_type_radio,dataset_radio, num_parts_slider, perspective_radio, division_method_radio],
    #     outputs=[gr.State()]
    # ).then(
    #     fn=plot_visualization,
    #     inputs=[task_type_radio,dataset_radio, perspective_radio, num_parts_slider, plot_type],
    #     outputs=chart
    # ).then( 
    #     fn=plot_recommendation_sankey,
    #     inputs=[task_type_radio,dataset_radio, num_parts_slider, perspective_radio, division_method_radio],
    #     outputs=[recommendation_plot]  # 注意这里是列表
    # )
    confirm_btn.click(
        fn=on_confirm,
        inputs=[task_type_radio,dataset_radio, num_parts_slider, perspective_radio, division_method_radio],
        outputs=data_table
    ).then(
        fn=load_analysis_report,
        inputs=[task_type_radio,dataset_radio, num_parts_slider, perspective_radio, division_method_radio],
        outputs=[gr.State()]
    ).then(
        fn=plot_visualization,
        inputs=[task_type_radio,dataset_radio, num_parts_slider, perspective_radio, division_method_radio,plot_type],
        outputs=chart
    ).then( 
        fn=plot_recommendation_sankey,
        inputs=[task_type_radio,dataset_radio, num_parts_slider, perspective_radio, division_method_radio],
        outputs=[recommendation_plot]  # 注意这里是列表
    )
    plot_type.change(
        fn=plot_visualization,
        inputs=[task_type_radio,dataset_radio, num_parts_slider, perspective_radio, division_method_radio,plot_type],
        outputs=chart
    )


    # plot_type.change(
    #     fn=plot_visualization,
    #     inputs=[task_type_radio,dataset_radio, perspective_radio, num_parts_slider, plot_type],
    #     outputs=chart
    # )
     
    task_type_radio.change(
        fn=update_dataset_options,
        inputs=task_type_radio,
        outputs=dataset_radio
    )
# 启动界面
iface.launch()