File size: 57,460 Bytes
49e436b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
843669a
49e436b
 
 
 
 
 
37833d2
49e436b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3545abe
fa3d99d
49e436b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3545abe
 
49e436b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3545abe
fa3d99d
49e436b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3545abe
fa3d99d
49e436b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3545abe
fa3d99d
49e436b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdeec0a
49e436b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4701f
49e436b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8b3637
49e436b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3545abe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
import os
HF_TOKEN = os.getenv("HF_TOKEN")

import numpy as np
import pandas as pd
import sklearn
import sklearn.metrics
from sklearn.metrics import roc_auc_score, roc_curve, precision_recall_curve, auc, precision_score, recall_score, f1_score, classification_report, accuracy_score, confusion_matrix, ConfusionMatrixDisplay, matthews_corrcoef
from sklearn.model_selection import train_test_split
from sklearn.calibration import calibration_curve
from math import sqrt
from scipy import stats as st
from random import randrange
from matplotlib import pyplot
import xgboost as xgb
import lightgbm as lgb
import catboost as cb
from catboost import Pool
from sklearn.ensemble import RandomForestClassifier
import optuna
from optuna.samplers import TPESampler
import shap
import gradio as gr
import random
import re

#Read data.
from datasets import load_dataset
x1 = load_dataset("mertkarabacak/NTDB-Epidural", data_files="mortality_data.csv", use_auth_token = HF_TOKEN)
x1 = pd.DataFrame(x1['train'])

x2 = load_dataset("mertkarabacak/NTDB-Epidural", data_files="discharge_data.csv", use_auth_token = HF_TOKEN)
x2 = pd.DataFrame(x2['train'])

x3 = load_dataset("mertkarabacak/NTDB-Epidural", data_files="los_data.csv", use_auth_token = HF_TOKEN)
x3 = pd.DataFrame(x3['train'])

x4 = load_dataset("mertkarabacak/NTDB-Epidural", data_files="iculos_data.csv", use_auth_token = HF_TOKEN)
x4 = pd.DataFrame(x4['train'])

x5 = load_dataset("mertkarabacak/NTDB-Epidural", data_files="complications_data.csv", use_auth_token = HF_TOKEN)
x5 = pd.DataFrame(x5['train'])

#Define inputs.
inputs = ['Age', 'Sex', 'Race', 'Ethnicity', 'Weight', 'Height', 'Systolic_Blood_Pressure', 'Pulse_Rate', 'Supplemental_Oxygen', 'Pulse_Oximetry', 'Respiratory_Assistance', 'Respiratory_Rate', 'Temperature', 'PreHospital_Cardiac_Arrest', 'GCS__Eye', 'GCS__Verbal', 'GCS__Motor', 'Pupillary_Response', 'Midline_Shift', 'Current_Smoker', 'Comorbid_Condition__Alcohol_Use_Disorder', 'Comorbid_Condition__Substance_Abuse_Disorder', 'Comorbid_Condition__Diabetes_Mellitus', 'Comorbid_Condition__Hypertension', 'Comorbid_Condition__Congestive_Heart_Failure', 'History_of_Myocardial_Infarction', 'Comorbid_Condition__Angina_Pectoris', 'History_of_Cerebrovascular_Accident', 'Comorbid_Condition__Peripheral_Arterial_Disease', 'Comorbid_Condition__Chronic_Obstructive_Pulmonary_Disease', 'Comorbid_Condition__Chronic_Renal_Failure', 'Comorbid_Condition__Cirrhosis', 'Comorbid_Condition__Bleeding_Disorder', 'Comorbid_Condition__Disseminated_Cancer', 'Comorbid_Condition__Currently_Receiving_Chemotherapy_for_Cancer', 'Comorbid_Condition__Dementia', 'Comorbid_Condition__Attention_Deficit_Disorder_or_Attention_Deficit_Hyperactivity_Disorder', 'Comorbid_Condition__Mental_or_Personality_Disorder', 'Ability_to_Complete_AgeAppropriate_ADL', 'Pregnancy', 'Anticoagulant_Therapy', 'Steroid_Use', 'Advanced_Directive_Limiting_Care', 'Transport_Mode', 'InterFacility_Transfer', 'Trauma_Type', 'Injury_Intent', 'Mechanism_of_Injury', 'Protective_Device', 'WorkRelated', 'AIS_Severity__Maximum_Severity_of_Injury_in_the_Head', 'AIS_Severity__Maximum_Severity_of_Injury_in_the_Face', 'AIS_Severity__Maximum_Severity_of_Injury_in_the_Neck', 'AIS_Severity__Maximum_Severity_of_Injury_in_the_Thorax', 'AIS_Severity__Maximum_Severity_of_Injury_in_the_Abdomen', 'AIS_Severity__Maximum_Severity_of_Injury_in_the_Spine', 'AIS_Severity__Maximum_Severity_of_Injury_in_the_Upper_Extremity', 'AIS_Severity__Maximum_Severity_of_Injury_in_the_Lower_Extremity', 'AIS_Severity__Maximum_Severity_of_Injury_in_Unspecified_Body_Regions', 'AIS_derived_ISS', 'Blood_Transfusion', 'Neurosurgical_Intervention', 'Cerebral_Monitoring', 'Alcohol_Screen', 'Alcohol_Screen_Result', 'Drug_Screen__Amphetamine', 'Drug_Screen__Barbiturate', 'Drug_Screen__Benzodiazepines', 'Drug_Screen__Cannabinoid', 'Drug_Screen__Cocaine', 'Drug_Screen__MDMA_or_Ecstasy', 'Drug_Screen__Methadone', 'Drug_Screen__Methamphetamine', 'Drug_Screen__Not_Tested', 'Drug_Screen__Opioid', 'Drug_Screen__Oxycodone', 'Drug_Screen__Phencyclidine', 'Drug_Screen__Tricyclic_Antidepressant', 'ACS_Verification_Level', 'Hospital_Type', 'Facility_Bed_Size', 'Primary_Method_of_Payment',]

#Assign unique values as answer options.
unique_SEX = ['Male', 'Female', 'Unknown']
unique_RACE = ['White', 'Black', 'Asian', 'American Indian', 'Pacific Islander', 'Other', 'Unknown']
unique_ETHNICITY = ['Not Hispanic or Latino', 'Hispanic or Latino', 'Unknown']
unique_SUPPLEMENTALOXYGEN = ['No supplemental oxygen', 'Supplemental oxygen', 'Unknown']
unique_RESPIRATORYASSISTANCE = ['Unassisted respiratory rate', 'Assisted respiratory rate', 'Unknown']
unique_PREHOSPITALCARDIACARREST = ['No', 'Yes', 'Unknown']
unique_TBIMIDLINESHIFT = ['No', 'Yes', 'Not imaged/unknown']
unique_TBIPUPILLARYRESPONSE = ['Both reactive', 'One reactive', 'Neither reactive', 'Unknown']
unique_CC_ADHD = ['No', 'Yes', 'Unknown']
unique_CC_ADLC = ['No', 'Yes', 'Unknown']
unique_CC_ALCOHOLISM = ['No', 'Yes', 'Unknown']
unique_CC_ANGINAPECTORIS = ['No', 'Yes', 'Unknown']
unique_CC_ANTICOAGULANT = ['No', 'Yes', 'Unknown']
unique_CC_BLEEDING = ['No', 'Yes', 'Unknown']
unique_CC_CHEMO = ['No', 'Yes', 'Unknown']
unique_CC_CHF = ['No', 'Yes', 'Unknown']
unique_CC_CIRRHOSIS = ['No', 'Yes', 'Unknown']
unique_CC_COPD = ['No', 'Yes', 'Unknown']
unique_CC_CVA = ['No', 'Yes', 'Unknown']
unique_CC_DEMENTIA = ['No', 'Yes', 'Unknown']
unique_CC_DIABETES = ['No', 'Yes', 'Unknown']
unique_CC_DISCANCER = ['No', 'Yes', 'Unknown']
unique_CC_FUNCTIONAL = ['No', 'Yes', 'Unknown']
unique_CC_HYPERTENSION = ['No', 'Yes', 'Unknown']
unique_CC_MENTALPERSONALITY = ['No', 'Yes', 'Unknown']
unique_CC_MI = ['No', 'Yes', 'Unknown']
unique_CC_PAD = ['No', 'Yes', 'Unknown']
unique_CC_RENAL = ['No', 'Yes', 'Unknown']
unique_CC_SMOKING = ['No', 'Yes', 'Unknown']
unique_CC_STEROID = ['No', 'Yes', 'Unknown']
unique_CC_SUBSTANCEABUSE = ['No', 'Yes', 'Unknown']
unique_CC_PREGNANCY = ['No', 'Yes', 'Unknown', 'Not applicable (male patient)']
unique_TRANSPORTMODE = ['Ground ambulance', 'Private vehicle/public vehicle/walk-in', 'Air ambulance', 'Police', 'Other/unknown']
unique_INTERFACILITYTRANSFER = ['No', 'Yes']
unique_TRAUMATYPE = ['Blunt', 'Penetrating', 'Other/unknown']
unique_INTENT = ['Unintentional', 'Assault', 'Self-inflicted', 'Other/undetermined/unknown']
unique_MECHANISM = ['Fall', 'Struck by or against', 'MVT occupant', 'MVT pedestrian', 'MVT motorcyclist', 'MVT pedal cyclist', 'Other MVT', 'Other transport', 'Other pedestrian', 'Other pedal cyclist', 'Firearm', 'Cut/pierce', 'Natural/environmental', 'Machinery', 'Overexertion', 'Other/unspecified/unknown']
unique_PROTDEV = ['None', 'Airbag present', 'Helmet', 'Lap belt', 'Shoulder Belt', 'Protective clothing', 'Protective non-clothing gear', 'Eye protection', 'Unknown']
unique_WORKRELATED = ['No', 'Yes (Unknown)', 'Yes (Construction and Extraction Occupations)', 'Yes (Transportation and Material Moving Occupations)', 'Yes (Installation, Maintenance, and Repair Occupations)', 'Yes (Farming, Fishing, and Forestry Occupations)', 'Yes (Building and Grounds Cleaning and Maintenance)', 'Yes (Food Preparation and Serving Related)', 'Yes (Production Occupations)', 'Yes (Sales and Related Occupations)', 'Yes (Arts, Design, Entertainment, Sports, and Media)', 'Yes (Military Specific Occupations)', 'Yes (Healthcare Practitioners and Technical Occupations)', 'Yes (Management Occupations)', 'Yes (Protective Service Occupations)', 'Yes (Education, Training, and Library Occupations)', 'Yes (Office and Administrative Support Occupations)', 'Yes (Computer and Mathematical Occupations)', 'Yes (Legal Occupations)', 'Yes (Personal Care and Service Occupations)']
unique_INTERVENTION = ['No', 'Yes']
unique_ICP = ['None', 'Intraventricular drain or catheter (e.g. ventriculostomy, external ventricular drain)', 'Intraparenchymal pressure monitor (e.g. Camino bolt, subarachnoid bolt, intraparenchymal catheter)', 'Jugular venous bulb', 'Intraparenchymal oxygen monitor (e.g. Licox)', 'Unknown']
unique_ALCOHOLSCREEN = ['Yes', 'No', 'Unknown']
unique_ANTIBIOTICTHERAPY = ['Yes', 'No', 'Unknown']
unique_DRGSCR_AMPHETAMINE = ['Not tested', 'No', 'Yes']
unique_DRGSCR_BARBITURATE = ['Not tested', 'No', 'Yes']
unique_DRGSCR_BENZODIAZEPINES = ['Not tested', 'No', 'Yes']
unique_DRGSCR_CANNABINOID = ['Not tested', 'No', 'Yes']
unique_DRGSCR_COCAINE = ['Not tested', 'No', 'Yes']
unique_DRGSCR_ECSTASY = ['Not tested', 'No', 'Yes']
unique_DRGSCR_METHADONE = ['Not tested', 'No', 'Yes']
unique_DRGSCR_METHAMPHETAMINE = ['Not tested', 'No', 'Yes']
unique_DRGSCR_OPIOID = ['Not tested', 'No', 'Yes']
unique_DRGSCR_OXYCODONE = ['Not tested', 'No', 'Yes']
unique_DRGSCR_PHENCYCLIDINE = ['Not tested', 'No', 'Yes']
unique_DRGSCR_TRICYCLICDEPRESS = ['Not tested', 'No', 'Yes']
unique_VERIFICATIONLEVEL = ['Level I Trauma Center', 'Level II Trauma Center', 'Level III Trauma Center', 'Unknown']
unique_HOSPITALTYPE = ['Non-profit', 'For profit', 'Government', 'Unknown']
unique_BEDSIZE = ['More than 600', '401 to 600', '201 to 400', '200 or fewer']
unique_PRIMARYMETHODPAYMENT = ['Private/commercial insurance', 'Medicaid', 'Medicare', 'Other government', 'Self-pay',  'Other', 'Not billed', 'Unknown']

#Prepare data for the outcome 1 (mortality).
y1 = x1.pop('OUTCOME')
categorical_columns1 = list(x1.select_dtypes('object').columns)
x1 = x1.astype({col: "category" for col in categorical_columns1})
y1_data_xgb = xgb.DMatrix(x1, label=y1, enable_categorical=True)
x1_lgb = x1.rename(columns = lambda x:re.sub('[^A-Za-z0-9_]+', '', x))
y1_data_lgb = lgb.Dataset(x1_lgb, label=y1) 
y1_data_cb = Pool(data=x1, label=y1, cat_features=categorical_columns1)
x1_rf = x1
categorical_columns1 = list(x1_rf.select_dtypes('category').columns)
x1_rf = x1_rf.astype({col: "category" for col in categorical_columns1})
le = sklearn.preprocessing.LabelEncoder()
for col in categorical_columns1:
        x1_rf[col] = le.fit_transform(x1_rf[col].astype(str))
d1 = dict.fromkeys(x1_rf.select_dtypes(np.int64).columns, str)
x1_rf = x1_rf.astype(d1)

#Prepare data for the outcome 2 (Discharge_Disposition).
y2 = x2.pop('OUTCOME')
categorical_columns2 = list(x2.select_dtypes('object').columns)
x2 = x2.astype({col: "category" for col in categorical_columns2})
y2_data_xgb = xgb.DMatrix(x2, label=y2, enable_categorical=True)
x2_lgb = x2.rename(columns = lambda x:re.sub('[^A-Za-z0-9_]+', '', x))
y2_data_lgb = lgb.Dataset(x2_lgb, label=y2) 
y2_data_cb = Pool(data=x2, label=y2, cat_features=categorical_columns2)
x2_rf = x2
categorical_columns2 = list(x2_rf.select_dtypes('category').columns)
x2_rf = x2_rf.astype({col: "category" for col in categorical_columns2})
le = sklearn.preprocessing.LabelEncoder()
for col in categorical_columns2:
        x2_rf[col] = le.fit_transform(x2_rf[col].astype(str))
d2 = dict.fromkeys(x2_rf.select_dtypes(np.int64).columns, str)
x2_rf = x2_rf.astype(d2)

#Prepare data for the outcome 3 (length of stay).
y3 = x3.pop('OUTCOME')
categorical_columns3 = list(x3.select_dtypes('object').columns)
x3 = x3.astype({col: "category" for col in categorical_columns3})
y3_data_xgb = xgb.DMatrix(x3, label=y3, enable_categorical=True)
x3_lgb = x3.rename(columns = lambda x:re.sub('[^A-Za-z0-9_]+', '', x))
y3_data_lgb = lgb.Dataset(x3_lgb, label=y3) 
y3_data_cb = Pool(data=x3, label=y3, cat_features=categorical_columns3)
x3_rf = x3
categorical_columns3 = list(x3_rf.select_dtypes('category').columns)
x3_rf = x3_rf.astype({col: "category" for col in categorical_columns3})
le = sklearn.preprocessing.LabelEncoder()
for col in categorical_columns3:
        x3_rf[col] = le.fit_transform(x3_rf[col].astype(str))
d3 = dict.fromkeys(x3_rf.select_dtypes(np.int64).columns, str)
x3_rf = x3_rf.astype(d3)

#Prepare data for the outcome 4 (ICU length of stay).
y4 = x4.pop('OUTCOME')
categorical_columns4 = list(x4.select_dtypes('object').columns)
x4 = x4.astype({col: "category" for col in categorical_columns4})
y4_data_xgb = xgb.DMatrix(x4, label=y4, enable_categorical=True)
x4_lgb = x4.rename(columns = lambda x:re.sub('[^A-Za-z0-9_]+', '', x))
y4_data_lgb = lgb.Dataset(x4_lgb, label=y4) 
y4_data_cb = Pool(data=x4, label=y4, cat_features=categorical_columns4)
x4_rf = x4
categorical_columns4 = list(x4_rf.select_dtypes('category').columns)
x4_rf = x4_rf.astype({col: "category" for col in categorical_columns4})
le = sklearn.preprocessing.LabelEncoder()
for col in categorical_columns4:
        x4_rf[col] = le.fit_transform(x4_rf[col].astype(str))
d4 = dict.fromkeys(x4_rf.select_dtypes(np.int64).columns, str)
x4_rf = x4_rf.astype(d4)

#Prepare data for the outcome 5 (major complications).
y5 = x5.pop('OUTCOME')
categorical_columns5 = list(x5.select_dtypes('object').columns)
x5 = x5.astype({col: "category" for col in categorical_columns5})
y5_data_xgb = xgb.DMatrix(x5, label=y5, enable_categorical=True)
x5_lgb = x5.rename(columns = lambda x:re.sub('[^A-Za-z0-9_]+', '', x))
y5_data_lgb = lgb.Dataset(x5_lgb, label=y5) 
y5_data_cb = Pool(data=x5, label=y5, cat_features=categorical_columns5)
x5_rf = x5
categorical_columns5 = list(x5_rf.select_dtypes('category').columns)
x5_rf = x5_rf.astype({col: "category" for col in categorical_columns5})
le = sklearn.preprocessing.LabelEncoder()
for col in categorical_columns5:
        x5_rf[col] = le.fit_transform(x5_rf[col].astype(str))
d5 = dict.fromkeys(x5_rf.select_dtypes(np.int64).columns, str)
x5_rf = x5_rf.astype(d5)

#Assign hyperparameters.
y1_xgb_params = {'objective': 'binary:logistic', 'booster': 'gbtree', 'lambda': 0.7463867502190046, 'alpha': 0.0007952683509471142, 'max_depth': 2, 'eta': 0.001938108415188413, 'gamma': 0.23560062559306924, 'grow_policy': 'depthwise'}
y1_lgb_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 9.55209278055602, 'lambda_l2': 9.791473124643204, 'num_leaves': 13, 'feature_fraction': 0.5992658612730835, 'bagging_fraction': 0.43683499843234525, 'bagging_freq': 4, 'min_child_samples': 26}
y1_cb_params = {'objective': 'CrossEntropy', 'colsample_bylevel': 0.02048734243685444, 'depth': 9, 'boosting_type': 'Ordered', 'bootstrap_type': 'MVS'}
y1_rf_params = {'criterion': 'gini', 'max_features': 'log2', 'max_depth': 1, 'n_estimators': 700, 'min_samples_leaf': 3, 'min_samples_split': 4}

y2_xgb_params = {}
y2_lgb_params = {}
y2_cb_params = {}
y2_rf_params = {}

y3_xgb_params = {}
y3_lgb_params = {}
y3_cb_params = {}
y3_rf_params = {}

y4_xgb_params = {}
y4_lgb_params = {}
y4_cb_params = {}
y4_rf_params = {}

y5_xgb_params = {}
y5_lgb_params = {}
y5_cb_params = {}
y5_rf_params = {}


#Modeling for y1 (mortality).
y1_model_xgb = xgb.train(params=y1_xgb_params, dtrain=y1_data_xgb)
y1_explainer_xgb = shap.TreeExplainer(y1_model_xgb)

y1_model_lgb = lgb.train(params=y1_lgb_params, train_set=y1_data_lgb)
y1_explainer_lgb = shap.TreeExplainer(y1_model_lgb)

y1_model_cb = cb.train(pool=y1_data_cb, params=y1_cb_params)
y1_explainer_cb = shap.TreeExplainer(y1_model_cb)

from sklearn.ensemble import RandomForestClassifier as rf
y1_rf = rf(**y1_rf_params)
y1_model_rf = y1_rf.fit(x1_rf, y1)
y1_explainer_rf = shap.TreeExplainer(y1_model_rf)


#Modeling for y2 (Discharge_Disposition).
y2_model_xgb = xgb.train(params=y2_xgb_params, dtrain=y2_data_xgb)
y2_explainer_xgb = shap.TreeExplainer(y2_model_xgb)

y2_model_lgb = lgb.train(params=y2_lgb_params, train_set=y2_data_lgb)
y2_explainer_lgb = shap.TreeExplainer(y2_model_lgb)

y2_model_cb = cb.train(pool=y2_data_cb, params=y2_cb_params)
y2_explainer_cb = shap.TreeExplainer(y2_model_cb)

from sklearn.ensemble import RandomForestClassifier as rf
y2_rf = rf(**y2_rf_params)
y2_model_rf = y2_rf.fit(x2_rf, y2)
y2_explainer_rf = shap.TreeExplainer(y2_model_rf)


#Modeling for y3 (length of stay).
y3_model_xgb = xgb.train(params=y3_xgb_params, dtrain=y3_data_xgb)
y3_explainer_xgb = shap.TreeExplainer(y3_model_xgb)

y3_model_lgb = lgb.train(params=y3_lgb_params, train_set=y3_data_lgb)
y3_explainer_lgb = shap.TreeExplainer(y3_model_lgb)

y3_model_cb = cb.train(pool=y3_data_cb, params=y3_cb_params)
y3_explainer_cb = shap.TreeExplainer(y3_model_cb)

from sklearn.ensemble import RandomForestClassifier as rf
y3_rf = rf(**y3_rf_params)
y3_model_rf = y3_rf.fit(x3_rf, y3)
y3_explainer_rf = shap.TreeExplainer(y3_model_rf)

#Modeling for y4 (ICU length of stay).
y4_model_xgb = xgb.train(params=y4_xgb_params, dtrain=y4_data_xgb)
y4_explainer_xgb = shap.TreeExplainer(y4_model_xgb)

y4_model_lgb = lgb.train(params=y4_lgb_params, train_set=y4_data_lgb)
y4_explainer_lgb = shap.TreeExplainer(y4_model_lgb)

y4_model_cb = cb.train(pool=y4_data_cb, params=y4_cb_params)
y4_explainer_cb = shap.TreeExplainer(y4_model_cb)

from sklearn.ensemble import RandomForestClassifier as rf
y4_rf = rf(**y4_rf_params)
y4_model_rf = y4_rf.fit(x4_rf, y4)
y4_explainer_rf = shap.TreeExplainer(y4_model_rf)

#Modeling for y5 (major complications).
y5_model_xgb = xgb.train(params=y5_xgb_params, dtrain=y5_data_xgb)
y5_explainer_xgb = shap.TreeExplainer(y5_model_xgb)

y5_model_lgb = lgb.train(params=y5_lgb_params, train_set=y5_data_lgb)
y5_explainer_lgb = shap.TreeExplainer(y5_model_lgb)

y5_model_cb = cb.train(pool=y5_data_cb, params=y5_cb_params)
y5_explainer_cb = shap.TreeExplainer(y5_model_cb)

from sklearn.ensemble import RandomForestClassifier as rf
y5_rf = rf(**y5_rf_params)
y5_model_rf = y5_rf.fit(x5_rf, y5)
y5_explainer_rf = shap.TreeExplainer(y5_model_rf)

#Define predict for y1 (mortality).
def y1_predict_xgb(*args):
    df_xgb = pd.DataFrame([args], columns=x1.columns)
    df_xgb = df_xgb.astype({col: "category" for col in categorical_columns1})
    pos_pred = y1_model_xgb.predict(xgb.DMatrix(df_xgb, enable_categorical=True))
    return {"Mortality": float(pos_pred[0]), "No Mortality": 1 - float(pos_pred[0])}

def y1_predict_lgb(*args):
    df = pd.DataFrame([args], columns=data.columns)
    df = df.astype({col: "category" for col in categorical_columns1})
    pos_pred = y1_model_lgb.predict(df)
    return {"Mortality": float(pos_pred[0]), "No Mortality": 1 - float(pos_pred[0])}

def y1_predict_cb(*args):
    df_cb = pd.DataFrame([args], columns=x1.columns)
    df_cb = df_cb.astype({col: "category" for col in categorical_columns1})
    pos_pred = y1_model_cb.predict(Pool(df_cb, cat_features = categorical_columns1), prediction_type='Probability')
    return {"Mortality": float(pos_pred[0][1]), "No Mortality": float(pos_pred[0][0])}

def y1_predict_rf(*args):
    df = pd.DataFrame([args], columns=x1_rf.columns)
    df = df.astype({col: "category" for col in categorical_columns1})
    d = dict.fromkeys(df.select_dtypes(np.int64).columns, np.int32)
    df = df.astype(d)
    pos_pred = y1_model_rf.predict_proba(df)
    return {"Mortality": float(pos_pred[0][1]), "Home Discharge": float(pos_pred[0][0])}

#Define predict for y2 (Discharge_Disposition).
def y2_predict_xgb(*args):
    df_xgb = pd.DataFrame([args], columns=x2.columns)
    df_xgb = df_xgb.astype({col: "category" for col in categorical_columns2})
    pos_pred = y2_model_xgb.predict(xgb.DMatrix(df_xgb, enable_categorical=True))
    return {"Facility Discharge": float(pos_pred[0]), "Home Discharge": 1 - float(pos_pred[0])}

def y2_predict_lgb(*args):
    df = pd.DataFrame([args], columns=data.columns)
    df = df.astype({col: "category" for col in categorical_columns2})
    pos_pred = y2_model_lgb.predict(df)
    return {"Facility Discharge": float(pos_pred[0]), "Home Discharge": 1 - float(pos_pred[0])}

def y2_predict_cb(*args):
    df_cb = pd.DataFrame([args], columns=x2.columns)
    df_cb = df_cb.astype({col: "category" for col in categorical_columns2})
    pos_pred = y2_model_cb.predict(Pool(df_cb, cat_features = categorical_columns2), prediction_type='Probability')
    return {"Facility Discharge": float(pos_pred[0][1]), "Home Discharge": float(pos_pred[0][0])}

def y2_predict_rf(*args):
    df = pd.DataFrame([args], columns=x2_rf.columns)
    df = df.astype({col: "category" for col in categorical_columns2})
    d = dict.fromkeys(df.select_dtypes(np.int64).columns, np.int32)
    df = df.astype(d)
    pos_pred = y2_model_rf.predict_proba(df)
    return {"Facility Discharge": float(pos_pred[0][1]), "No Prolonged LOS": float(pos_pred[0][0])}

#Define predict for y3 (length of stay).
def y3_predict_xgb(*args):
    df_xgb = pd.DataFrame([args], columns=x3.columns)
    df_xgb = df_xgb.astype({col: "category" for col in categorical_columns3})
    pos_pred = y3_model_xgb.predict(xgb.DMatrix(df_xgb, enable_categorical=True))
    return {"Prolonged LOS": float(pos_pred[0]), "No Prolonged LOS": 1 - float(pos_pred[0])}

def y3_predict_lgb(*args):
    df = pd.DataFrame([args], columns=data.columns)
    df = df.astype({col: "category" for col in categorical_columns3})
    pos_pred = y3_model_lgb.predict(df)
    return {"Prolonged LOS": float(pos_pred[0]), "No Prolonged LOS": 1 - float(pos_pred[0])}

def y3_predict_cb(*args):
    df_cb = pd.DataFrame([args], columns=x3.columns)
    df_cb = df_cb.astype({col: "category" for col in categorical_columns3})
    pos_pred = y3_model_cb.predict(Pool(df_cb, cat_features = categorical_columns3), prediction_type='Probability')
    return {"Prolonged LOS": float(pos_pred[0][1]), "No Prolonged LOS": float(pos_pred[0][0])}

def y3_predict_rf(*args):
    df = pd.DataFrame([args], columns=x3_rf.columns)
    df = df.astype({col: "category" for col in categorical_columns3})
    d = dict.fromkeys(df.select_dtypes(np.int64).columns, np.int32)
    df = df.astype(d)
    pos_pred = y3_model_rf.predict_proba(df)
    return {"Prolonged LOS": float(pos_pred[0][1]), "No Prolonged LOS": float(pos_pred[0][0])}

#Define predict for y4 (ICU length of stay).
def y4_predict_xgb(*args):
    df_xgb = pd.DataFrame([args], columns=x4.columns)
    df_xgb = df_xgb.astype({col: "category" for col in categorical_columns4})
    pos_pred = y4_model_xgb.predict(xgb.DMatrix(df_xgb, enable_categorical=True))
    return {"Prolonged ICU LOS": float(pos_pred[0]), "No Prolonged ICU LOS": 1 - float(pos_pred[0])}

def y4_predict_lgb(*args):
    df = pd.DataFrame([args], columns=data.columns)
    df = df.astype({col: "category" for col in categorical_columns4})
    pos_pred = y4_model_lgb.predict(df)
    return {"Prolonged ICU LOS": float(pos_pred[0]), "No Prolonged ICU LOS": 1 - float(pos_pred[0])}

def y4_predict_cb(*args):
    df_cb = pd.DataFrame([args], columns=x4.columns)
    df_cb = df_cb.astype({col: "category" for col in categorical_columns4})
    pos_pred = y4_model_cb.predict(Pool(df_cb, cat_features = categorical_columns4), prediction_type='Probability')
    return {"Prolonged ICU LOS": float(pos_pred[0][1]), "No Prolonged ICU LOS": float(pos_pred[0][0])}

def y4_predict_rf(*args):
    df = pd.DataFrame([args], columns=x4_rf.columns)
    df = df.astype({col: "category" for col in categorical_columns4})
    d = dict.fromkeys(df.select_dtypes(np.int64).columns, np.int32)
    df = df.astype(d)
    pos_pred = y4_model_rf.predict_proba(df)
    return {"Prolonged ICU LOS": float(pos_pred[0][1]), "No Prolonged ICU LOS": float(pos_pred[0][0])}

#Define predict for y5 (major complications).
def y5_predict_xgb(*args):
    df_xgb = pd.DataFrame([args], columns=x5.columns)
    df_xgb = df_xgb.astype({col: "category" for col in categorical_columns5})
    pos_pred = y5_model_xgb.predict(xgb.DMatrix(df_xgb, enable_categorical=True))
    return {"Major Complications": float(pos_pred[0]), "No Major Complications": 1 - float(pos_pred[0])}

def y5_predict_lgb(*args):
    df = pd.DataFrame([args], columns=data.columns)
    df = df.astype({col: "category" for col in categorical_columns5})
    pos_pred = y5_model_lgb.predict(df)
    return {"Major Complications": float(pos_pred[0]), "No Major Complications": 1 - float(pos_pred[0])}

def y5_predict_cb(*args):
    df_cb = pd.DataFrame([args], columns=x5.columns)
    df_cb = df_cb.astype({col: "category" for col in categorical_columns5})
    pos_pred = y5_model_cb.predict(Pool(df_cb, cat_features = categorical_columns5), prediction_type='Probability')
    return {"Major Complications": float(pos_pred[0][1]), "No Major Complications": float(pos_pred[0][0])}

def y5_predict_rf(*args):
    df = pd.DataFrame([args], columns=x5_rf.columns)
    df = df.astype({col: "category" for col in categorical_columns5})
    d = dict.fromkeys(df.select_dtypes(np.int64).columns, np.int32)
    df = df.astype(d)
    pos_pred = y5_model_rf.predict_proba(df)
    return {"Major Complications": float(pos_pred[0][1]), "No Major Complications": float(pos_pred[0][0])}


#Define interpret for y1 (mortality).
def y1_interpret_xgb(*args):
    df = pd.DataFrame([args], columns=x1.columns)
    df = df.astype({col: "category" for col in categorical_columns1})
    shap_values = y1_explainer_xgb.shap_values(xgb.DMatrix(df, enable_categorical=True))
    scores_desc = list(zip(shap_values[0], x1.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y1_interpret_lgb(*args):
    df = pd.DataFrame([args], columns=x1.columns)
    df = df.astype({col: "category" for col in categorical_columns1})
    shap_values = y1_explainer_lgb.shap_values(df)
    scores_desc = list(zip(shap_values[0][0], x1.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y1_interpret_cb(*args):
    df = pd.DataFrame([args], columns=x1.columns)
    df = df.astype({col: "category" for col in categorical_columns1})
    shap_values = y1_explainer_cb.shap_values(Pool(df, cat_features = categorical_columns1))
    scores_desc = list(zip(shap_values[0], x1.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y1_interpret_rf(*args):
    df = pd.DataFrame([args], columns=x1_rf.columns)
    df = df.astype({col: "category" for col in categorical_columns1})
    shap_values = y1_explainer_rf.shap_values(df)
    scores_desc = list(zip(shap_values[0][0], x1_rf.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

#Define interpret for y2 (Discharge_Disposition).
def y2_interpret_xgb(*args):
    df = pd.DataFrame([args], columns=x2.columns)
    df = df.astype({col: "category" for col in categorical_columns2})
    shap_values = y2_explainer_xgb.shap_values(xgb.DMatrix(df, enable_categorical=True))
    scores_desc = list(zip(shap_values[0], x2.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y2_interpret_lgb(*args):
    df = pd.DataFrame([args], columns=x2.columns)
    df = df.astype({col: "category" for col in categorical_columns2})
    shap_values = y2_explainer_lgb.shap_values(df)
    scores_desc = list(zip(shap_values[0][0], x2.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y2_interpret_cb(*args):
    df = pd.DataFrame([args], columns=x2.columns)
    df = df.astype({col: "category" for col in categorical_columns2})
    shap_values = y2_explainer_cb.shap_values(Pool(df, cat_features = categorical_columns2))
    scores_desc = list(zip(shap_values[0], x2.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y2_interpret_rf(*args):
    df = pd.DataFrame([args], columns=x2_rf.columns)
    df = df.astype({col: "category" for col in categorical_columns2})
    shap_values = y2_explainer_rf.shap_values(df)
    scores_desc = list(zip(shap_values[0][0], x2_rf.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

#Define interpret for y3 (length of stay).
def y3_interpret_xgb(*args):
    df = pd.DataFrame([args], columns=x3.columns)
    df = df.astype({col: "category" for col in categorical_columns3})
    shap_values = y3_explainer_xgb.shap_values(xgb.DMatrix(df, enable_categorical=True))
    scores_desc = list(zip(shap_values[0], x3.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y3_interpret_lgb(*args):
    df = pd.DataFrame([args], columns=x3.columns)
    df = df.astype({col: "category" for col in categorical_columns3})
    shap_values = y3_explainer_lgb.shap_values(df)
    scores_desc = list(zip(shap_values[0][0], x3.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y3_interpret_cb(*args):
    df = pd.DataFrame([args], columns=x3.columns)
    df = df.astype({col: "category" for col in categorical_columns3})
    shap_values = y3_explainer_cb.shap_values(Pool(df, cat_features = categorical_columns3))
    scores_desc = list(zip(shap_values[0], x3.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y3_interpret_rf(*args):
    df = pd.DataFrame([args], columns=x3_rf.columns)
    df = df.astype({col: "category" for col in categorical_columns3})
    shap_values = y3_explainer_rf.shap_values(df)
    scores_desc = list(zip(shap_values[0][0], x3_rf.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

#Define interpret for y4 (ICU length of stay).
def y4_interpret_xgb(*args):
    df = pd.DataFrame([args], columns=x4.columns)
    df = df.astype({col: "category" for col in categorical_columns4})
    shap_values = y4_explainer_xgb.shap_values(xgb.DMatrix(df, enable_categorical=True))
    scores_desc = list(zip(shap_values[0], x4.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y4_interpret_lgb(*args):
    df = pd.DataFrame([args], columns=x4.columns)
    df = df.astype({col: "category" for col in categorical_columns4})
    shap_values = y4_explainer_lgb.shap_values(df)
    scores_desc = list(zip(shap_values[0][0], x4.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y4_interpret_cb(*args):
    df = pd.DataFrame([args], columns=x4.columns)
    df = df.astype({col: "category" for col in categorical_columns4})
    shap_values = y4_explainer_cb.shap_values(Pool(df, cat_features = categorical_columns4))
    scores_desc = list(zip(shap_values[0], x4.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y4_interpret_rf(*args):
    df = pd.DataFrame([args], columns=x4_rf.columns)
    df = df.astype({col: "category" for col in categorical_columns4})
    shap_values = y4_explainer_rf.shap_values(df)
    scores_desc = list(zip(shap_values[0][0], x4_rf.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

#Define interpret for y5 (major complications).
def y5_interpret_xgb(*args):
    df = pd.DataFrame([args], columns=x5.columns)
    df = df.astype({col: "category" for col in categorical_columns5})
    shap_values = y5_explainer_xgb.shap_values(xgb.DMatrix(df, enable_categorical=True))
    scores_desc = list(zip(shap_values[0], x5.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y5_interpret_lgb(*args):
    df = pd.DataFrame([args], columns=x5.columns)
    df = df.astype({col: "category" for col in categorical_columns5})
    shap_values = y5_explainer_lgb.shap_values(df)
    scores_desc = list(zip(shap_values[0][0], x5.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y5_interpret_cb(*args):
    df = pd.DataFrame([args], columns=x5.columns)
    df = df.astype({col: "category" for col in categorical_columns5})
    shap_values = y5_explainer_cb.shap_values(Pool(df, cat_features = categorical_columns5))
    scores_desc = list(zip(shap_values[0], x5.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

def y5_interpret_rf(*args):
    df = pd.DataFrame([args], columns=x5_rf.columns)
    df = df.astype({col: "category" for col in categorical_columns5})
    shap_values = y5_explainer_rf.shap_values(df)
    scores_desc = list(zip(shap_values[0][0], x5_rf.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(facecolor='white')
    fig_m.set_size_inches(14, 10)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values", fontsize = 24, pad = 20, fontweight = 'bold')
    plt.yticks(fontsize=12)
    plt.xlabel("Shap Value", fontsize = 16, labelpad=8, fontweight = 'bold')
    plt.ylabel("Feature", fontsize = 16, labelpad=14, fontweight = 'bold')
    return fig_m

with gr.Blocks(title = "NTDB-Epidural") as demo:
    
    gr.Markdown(
        """ 
    """
    )
        
    gr.Markdown(
        """
    # Prediction Tool

    ## Epidural Hematoma Outcomes

    **The publication describing the details of this predictive tool will be posted here upon the acceptance of publication.**

    ### Disclaimer

    The American College of Surgeons National Trauma Data Bank (ACS-NTDB) and the hospitals participating in the ACS-NTDB are the source of the data used herein; they have not been verified and are not responsible for the statistical validity of the data analysis or the conclusions derived by the authors.

    The predictive tool located on this web page is for general health information only. This prediction tool should not be used in place of professional medical service for any disease or concern. Users of the prediction tool shouldn't base their decisions about their own health issues on the information presented here. You should ask any questions to your own doctor or another healthcare professional. 

    The authors of the study mentioned above make no guarantees or representations, either express or implied, as to the completeness, timeliness, comparative or contentious nature, or utility of any information contained in or referred to in this prediction tool. The risk associated with using this prediction tool or the information in this predictive tool is not at all assumed by the authors. The information contained in the prediction tools may be outdated, not complete, or incorrect because health-related information is subject to frequent change and multiple confounders.

    No express or implied doctor-patient relationship is established by using the prediction tool. The prediction tools on this website are not validated by the authors. Users of the tool are not contacted by the authors, who also do not record any specific information about them.

    You are hereby advised to seek the advice of a doctor or other qualified healthcare provider before making any decisions, acting, or refraining from acting in response to any healthcare problem or issue you may be experiencing at any time, now or in the future. By using the prediction tool, you acknowledge and agree that neither the authors nor any other party are or will be liable or otherwise responsible for any decisions you make, actions you take, or actions you choose not to take as a result of using any information presented here.

    By using this tool, you accept all of the above terms.

    """
    )

    with gr.Row():

        with gr.Column():

            Age = gr.Slider(label="Age", minimum = 18, maximum = 99, step = 1, value = 37)

            Sex = gr.Radio(label = "Sex", choices = unique_SEX, type = 'index', value = 'Male')

            Race = gr.Radio(label = "Race", choices = unique_RACE, type = 'index', value = 'White')
            
            Ethnicity = gr.Radio(label = "Ethnicity", choices = unique_ETHNICITY, type = 'index',value = 'Not Hispanic or Latino')

            Weight = gr.Slider(label = "Weight (in kilograms)", minimum = 20, maximum = 200, step = 1, value = 75)
            
            Height = gr.Slider(label = "Height (in centimeters)", minimum = 100, maximum = 250, step = 1, value = 175)
            
            Systolic_Blood_Pressure = gr.Slider(label = "Systolic Blood Pressure", minimum = 50, maximum = 2.25, step = 1, value = 135)

            Pulse_Rate = gr.Slider(label = "Pulse Rate", minimum=20, maximum=250, step=1, value = 250)

            Supplemental_Oxygen = gr.Radio(label = "Supplemental Oxygen", choices = unique_SUPPLEMENTALOXYGEN, type = 'index', value = 'No supplemental oxygen')
            
            Pulse_Oximetry = gr.Slider(label = "Pulse Oximetry", minimum = 50, maximum = 100, step = 1, value = 99)

            Respiratory_Assistance = gr.Radio(label = "Respiratory Assistance", choices = unique_RESPIRATORYASSISTANCE, type = 'index', value = 'Unassisted respiratory rate')

            Respiratory_Rate = gr.Slider(label = "Respiratory Rate", minimum = 1, maximum = 99, step = 1, value = 18)

            Temperature = gr.Slider(label = "Temperature", minimum = 30, maximum = 50, step = 0.1, value = 36.5)

            PreHospital_Cardiac_Arrest = gr.Radio(label = "Pre-Hospital Cardiac Arrest", choices = unique_PREHOSPITALCARDIACARREST, type = 'index', value = 'No')
            
            GCS__Eye = gr.Slider(label = "GCS - Eye", minimum = 1, maximum = 4, step = 1, value = 4)

            GCS__Verbal = gr.Slider(label = "GCS - Verbal", minimum = 1, maximum = 5, step = 1, value = 5)

            GCS__Motor = gr.Slider(label = "GCS - Motor", minimum = 1, maximum = 6, step = 1, value = 6)

            Total_GCS = gr.Slider(label = "GCS - Total", minimum = 1, maximum = 15, step = 1, value = 15)
            
            Pupillary_Response = gr.Radio(label = "Pupillary Response", choices = unique_TBIPUPILLARYRESPONSE, type = 'index', value = 'Both reactive')
            
            Midline_Shift = gr.Radio(label = "Midline Shift", choices = unique_TBIMIDLINESHIFT, type = 'index', value = 'No')
            
            Current_Smoker = gr.Radio(label = "Current Smoker", choices = unique_CC_SMOKING, type = 'index', value = 'No')

            Comorbid_Condition__Alcohol_Use_Disorder = gr.Radio(label = "Comorbid Condition - Alcohol Use Disorder", choices = unique_CC_ALCOHOLISM, type = 'index', value = 'No')

            Comorbid_Condition__Substance_Abuse_Disorder = gr.Radio(label = "Comorbid Condition - Substance Abuse Disorder", choices = unique_CC_SUBSTANCEABUSE, type = 'index', value = 'No')

            Comorbid_Condition__Diabetes_Mellitus = gr.Radio(label = "Comorbid Condition - Diabetes Mellitus", choices = unique_CC_DIABETES, type = 'index', value = 'No')

            Comorbid_Condition__Hypertension = gr.Radio(label = "Comorbid Condition - Hypertension", choices = unique_CC_HYPERTENSION, type = 'index', value = 'No')

            Comorbid_Condition__Congestive_Heart_Failure = gr.Radio(label = "Comorbid Condition - Congestive Heart Failure", choices = unique_CC_CHF, type = 'index', value = 'No')
            
            History_of_Myocardial_Infarction = gr.Radio(label = "History of Myocardial Infarction", choices = unique_CC_MI, type = 'index', value = 'No')

            Comorbid_Condition__Angina_Pectoris = gr.Radio(label = "Comorbid Condition - Angina Pectoris", choices = unique_CC_ANGINAPECTORIS, type = 'index', value = 'No')
            
            History_of_Cerebrovascular_Accident = gr.Radio(label = "History of Cerebrovascular Accident", choices = unique_CC_CVA, type = 'index', value = 'No')

            Comorbid_Condition__Peripheral_Arterial_Disease = gr.Radio(label = "Comorbid Condition - Peripheral Arterial Disease", choices = unique_CC_PAD, type = 'index', value = 'No')

            Comorbid_Condition__Chronic_Obstructive_Pulmonary_Disease = gr.Radio(label = "Comorbid Condition - Chronic Obstructive Pulmonary Disease", choices = unique_CC_COPD, type = 'index', value = 'No')

            Comorbid_Condition__Chronic_Renal_Failure = gr.Radio(label = "Comorbid Condition - Chronic Renal Failure", choices = unique_CC_RENAL, type = 'index', value = 'No')

            Comorbid_Condition__Cirrhosis = gr.Radio(label = "Comorbid Condition - Cirrhosis", choices = unique_CC_CIRRHOSIS, type = 'index', value = 'No')

            Comorbid_Condition__Bleeding_Disorder = gr.Radio(label = "Comorbid Condition - Bleeding Disorder", choices = unique_CC_BLEEDING, type = 'index', value = 'No')
            
            Comorbid_Condition__Disseminated_Cancer = gr.Radio(label = "Comorbid Condition - Disseminated Cancer", choices = unique_CC_DISCANCER, type = 'index', value = 'No')

            Comorbid_Condition__Currently_Receiving_Chemotherapy_for_Cancer = gr.Radio(label = "Comorbid Condition - Currently Receiving Chemotherapy for Cancer", choices = unique_CC_CHEMO, type = 'index', value = 'No')

            Comorbid_Condition__Dementia = gr.Radio(label = "Comorbid Condition - Dementia", choices = unique_CC_DEMENTIA, type = 'index', value = 'xxx')

            Comorbid_Condition__Attention_Deficit_Disorder_or_Attention_Deficit_Hyperactivity_Disorder = gr.Radio(label = "Comorbid Condition - Attention Deficit Disorder or Attention Deficit Hyperactivity Disorder", choices = unique_CC_ADHD, type = 'index', value = 'No')

            Comorbid_Condition__Mental_or_Personality_Disorder = gr.Radio(label = "Comorbid Condition - Mental or Personality Disorder", choices = unique_CC_MENTALPERSONALITY, type = 'index', value = 'No')

            Ability_to_Complete_AgeAppropriate_ADL = gr.Radio(label = "Ability to Complete Age-Appropriate ADL", choices = unique_CC_FUNCTIONAL, type = 'index', value = 'Yes')

            Pregnancy = gr.Radio(label = "Pregnancy", choices = unique_CC_PREGNANCY, type = 'index', value = 'No')

            Anticoagulant_Therapy = gr.Radio(label = "Anticoagulant Therapy", choices = unique_CC_ANTICOAGULANT, type = 'index', value = 'No')

            Steroid_Use = gr.Radio(label = "Steroid Use", choices = unique_CC_STEROID, type = 'index', value = 'xxx')

            Advanced_Directive_Limiting_Care = gr.Radio(label = "Advanced Directive Limiting Care", choices = unique_CC_ADLC, type = 'index', value = 'No')

            Transport_Mode = gr.Radio(label = "Transport Mode", choices = unique_TRANSPORTMODE, type = 'index', value = 'Ground ambulance')

            InterFacility_Transfer = gr.Radio(label = "Inter-Facility Transfer", choices = unique_INTERFACILITYTRANSFER, type = 'index', value = 'No')

            Trauma_Type = gr.Radio(label = "Trauma Type", choices = unique_TRAUMATYPE, type = 'index', value = 'Blunt')

            Injury_Intent = gr.Radio(label = "Injury Intent", choices = unique_INTENT, type = 'index', value = 'Unintentional')

            Mechanism_of_Injury = gr.Dropdown(label = "Mechanism of Injury", choices = unique_MECHANISM, type = 'index', value = 'Fall')
         
            Protective_Device = gr.Dropdown(label = "Protective Device", choices = xxx, type = 'index', value = 'None')

            WorkRelated = gr.Dropdown(label = "Work-Related", choices = unique_PROTDEV, type = 'index', value = 'No')

            AIS_Severity__Maximum_Severity_of_Injury_in_the_Head = gr.Slider(label = "AIS Severity - Maximum Severity of Injury in the Head", minimum = 0, maximum = 9, step = 1, value = 1)
            
            AIS_Severity__Maximum_Severity_of_Injury_in_the_Face = gr.Slider(label = "AIS Severity - Maximum Severity of Injury in the Face", minimum = 0, maximum = 9, step = 1, value = 1)
            
            AIS_Severity__Maximum_Severity_of_Injury_in_the_Neck = gr.Slider(label = "AIS Severity - Maximum Severity of Injury in the Neck", minimum = 0, maximum = 9, step = 1, value = 0)
            
            AIS_Severity__Maximum_Severity_of_Injury_in_the_Thorax = gr.Slider(label = "AIS Severity - Maximum Severity of Injury in the Thorax", minimum = 0, maximum = 9, step = 1, value = 0)
            
            AIS_Severity__Maximum_Severity_of_Injury_in_the_Abdomen = gr.Slider(label = "AIS Severity - Maximum Severity of Injury in the Abdomen", minimum = 0, maximum = 9, step = 1, value = 0)
            
            AIS_Severity__Maximum_Severity_of_Injury_in_the_Spine = gr.Slider(label = "AIS Severity - Maximum Severity of Injury in the Spine", minimum = 0, maximum = 9, step = 1, value = 0)
            
            AIS_Severity__Maximum_Severity_of_Injury_in_the_Upper_Extremity = gr.Slider(label = "AIS Severity - Maximum Severity of Injury in the Upper Extremity", minimum = 0, maximum = 9, step = 1, value = 0)
            
            AIS_Severity__Maximum_Severity_of_Injury_in_the_Lower_Extremity = gr.Slider(label = "AIS Severity - Maximum Severity of Injury in the Lower Extremity", minimum = 0, maximum = 9, step = 1, value = 0)
            
            AIS_Severity__Maximum_Severity_of_Injury_in_Unspecified_Body_Regions = gr.Slider(label = "AIS Severity - Maximum Severity of Injury in Unspecified Body Regions", minimum = 0, maximum = 9, step = 1, value = 0)
            
            AIS_derived_ISS = gr.Slider(label="AIS derived ISS", minimum = 1, maximum = 75, step = 1, value = 1)
            
            Blood_Transfusion = gr.Slider(label="Blood Transfusion", minimum = 0, maximum = 5000, step = 50, value = 0)
                        
            Neurosurgical_Intervention = gr.Radio(label = "Neurosurgical Intervention", choices = unique_INTERVENTION, type = 'index', value = 'No')

            Cerebral_Monitoring = gr.Dropdown(label = "Cerebral Monitoring", choices = unique_ICP, type = 'index', value = 'None')

            Alcohol_Screen = gr.Radio(label = "Alcohol Screen", choices = unique_ALCOHOLSCREEN, type = 'index', value = 'Yes')

            Alcohol_Screen_Result = gr.Slider(label="Alcohol Screen Result", minimum = 0, maximum = 1, step = 0.1, value = 0)
            
            Drug_Screen__Amphetamine = gr.Radio(label = "Drug Screen - Amphetamine", choices = unique_DRGSCR_AMPHETAMINE, type = 'index', value = 'No')
            
            Drug_Screen__Barbiturate = gr.Radio(label = "Drug Screen - Barbiturate", choices = unique_DRGSCR_BARBITURATE, type = 'index', value = 'No')
            
            Drug_Screen__Benzodiazepines = gr.Radio(label = "Drug Screen - Benzodiazepines", choices = unique_DRGSCR_BENZODIAZEPINES, type = 'index', value = 'No')
            
            Drug_Screen__Cannabinoid = gr.Radio(label = "Drug Screen - Cannabinoid", choices = unique_DRGSCR_CANNABINOID, type = 'index', value = 'No')
            
            Drug_Screen__Cocaine = gr.Radio(label = "Drug Screen - Cocaine", choices = unique_DRGSCR_COCAINE, type = 'index', value = 'No')
            
            Drug_Screen__MDMA_or_Ecstasy = gr.Radio(label = "Drug Screen - MDMA or Ecstasy", choices = unique_DRGSCR_ECSTASY, type = 'index', value = 'No')
            
            Drug_Screen__Methadone = gr.Radio(label = "Drug Screen - Methadone", choices = unique_DRGSCR_METHADONE, type = 'index', value = 'No')
            
            Drug_Screen__Methamphetamine = gr.Radio(label = "Drug Screen - Methamphetamine", choices = unique_DRGSCR_METHAMPHETAMINE, type = 'index', value = 'No')
            
            Drug_Screen__Opioid = gr.Radio(label = "Drug Screen - Opioid", choices = unique_DRGSCR_OPIOID, type = 'index', value = 'No')
            
            Drug_Screen__Oxycodone = gr.Radio(label = "Drug Screen - Oxycodone", choices = unique_DRGSCR_OXYCODONE, type = 'index', value = 'No')
            
            Drug_Screen__Phencyclidine = gr.Radio(label = "Drug Screen - Phencyclidine", choices = unique_DRGSCR_PHENCYCLIDINE, type = 'index', value = 'No')
            
            Drug_Screen__Tricyclic_Antidepressant = gr.Radio(label = "Drug Screen - Tricyclic Antidepressant", choices = unique_DRGSCR_TRICYCLICDEPRESS, type = 'index', value = 'No')
            
            ACS_Verification_Level = gr.Radio(label = "ACS Verification Level", choices = unique_VERIFICATIONLEVEL, type = 'index', value = 'No')
            
            Hospital_Type = gr.Radio(label = "Hospital Type", choices = unique_HOSPITALTYPE, type = 'index', value = 'No')
            
            Facility_Bed_Size = gr.Radio(label = "Facility Bed Size", choices = unique_BEDSIZE, type = 'index', value = 'More than 600')
            
            Primary_Method_of_Payment = gr.Dropdown(label = "Primary Method of Payment", choices = unique_PRIMARYMETHODPAYMENT, type = 'index', value = 'Private/commercial insurance')
            
        with gr.Column():
            
            with gr.Box():

                with gr.Row():
                    y1_predict_btn_xgb = gr.Button(value="Predict (XGBoost)")
                    y1_predict_btn_lgb = gr.Button(value="Predict (LightGBM)")
                    y1_predict_btn_cb = gr.Button(value="Predict (CatBoost)")
                    y1_predict_btn_rf = gr.Button(value="Predict (Random Forest)")
                label = gr.Label()

                with gr.Row():
                    y1_interpret_btn_xgb = gr.Button(value="Explain (XGBoost)")
                    y1_interpret_btn_lgb = gr.Button(value="Explain (LightGBM)")
                    y1_interpret_btn_cb = gr.Button(value="Explain (CatBoost)")
                    y1_interpret_btn_rf = gr.Button(value="Explain (Random Forest)") 

                plot = gr.Plot()

                y1_predict_btn_xgb.click(
                    y1_predict_xgb,
                    inputs = inputs,
                    outputs = [label]
                )

                y1_predict_btn_lgb.click(
                    y1_predict_lgb,
                    inputs = inputs,
                    outputs = [label]
                )

                y1_predict_btn_cb.click(
                    y1_predict_cb,
                    inputs = inputs,
                    outputs = [label]
                )

                y1_predict_btn_rf.click(
                    y1_predict_rf,
                    inputs = inputs,
                    outputs = [label]
                )

                y1_interpret_btn_xgb.click(
                    y1_interpret_xgb,
                    inputs = inputs,
                    outputs = [plot],
                )

                y1_interpret_btn_lgb.click(
                    y1_interpret_lgb,
                    inputs = inputs,
                    outputs = [plot],
                )

                y1_interpret_btn_cb.click(
                    y1_interpret_cb,
                    inputs = inputs,
                    outputs = [plot],
                )

                y1_interpret_btn_rf.click(
                    y1_interpret_rf,
                    inputs = inputs,
                    outputs = [plot],
                )
                
demo.launch()