|
import cv2 |
|
import math |
|
import numpy as np |
|
import random |
|
import torch |
|
from torch.utils import data as data |
|
|
|
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels |
|
from basicsr.data.transforms import augment |
|
from basicsr.utils import img2tensor, DiffJPEG, USMSharp |
|
from basicsr.utils.img_process_util import filter2D |
|
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt |
|
from basicsr.data.transforms import paired_random_crop |
|
|
|
AUGMENT_OPT = { |
|
'use_hflip': False, |
|
'use_rot': False |
|
} |
|
|
|
KERNEL_OPT = { |
|
'blur_kernel_size': 21, |
|
'kernel_list': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'], |
|
'kernel_prob': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03], |
|
'sinc_prob': 0.1, |
|
'blur_sigma': [0.2, 3], |
|
'betag_range': [0.5, 4], |
|
'betap_range': [1, 2], |
|
|
|
'blur_kernel_size2': 21, |
|
'kernel_list2': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'], |
|
'kernel_prob2': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03], |
|
'sinc_prob2': 0.1, |
|
'blur_sigma2': [0.2, 1.5], |
|
'betag_range2': [0.5, 4], |
|
'betap_range2': [1, 2], |
|
'final_sinc_prob': 0.8, |
|
} |
|
|
|
DEGRADE_OPT = { |
|
'resize_prob': [0.2, 0.7, 0.1], |
|
'resize_range': [0.15, 1.5], |
|
'gaussian_noise_prob': 0.5, |
|
'noise_range': [1, 30], |
|
'poisson_scale_range': [0.05, 3], |
|
'gray_noise_prob': 0.4, |
|
'jpeg_range': [30, 95], |
|
|
|
|
|
'second_blur_prob': 0.8, |
|
'resize_prob2': [0.3, 0.4, 0.3], |
|
'resize_range2': [0.3, 1.2], |
|
'gaussian_noise_prob2': 0.5, |
|
'noise_range2': [1, 25], |
|
'poisson_scale_range2': [0.05, 2.5], |
|
'gray_noise_prob2': 0.4, |
|
'jpeg_range2': [30, 95], |
|
|
|
'gt_size': 512, |
|
'no_degradation_prob': 0.01, |
|
'use_usm': True, |
|
'sf': 4, |
|
'random_size': False, |
|
'resize_lq': True |
|
} |
|
|
|
class RealESRGANDegradation: |
|
|
|
def __init__(self, augment_opt=None, kernel_opt=None, degrade_opt=None, device='cuda', resolution=None): |
|
if augment_opt is None: |
|
augment_opt = AUGMENT_OPT |
|
self.augment_opt = augment_opt |
|
if kernel_opt is None: |
|
kernel_opt = KERNEL_OPT |
|
self.kernel_opt = kernel_opt |
|
if degrade_opt is None: |
|
degrade_opt = DEGRADE_OPT |
|
self.degrade_opt = degrade_opt |
|
if resolution is not None: |
|
self.degrade_opt['gt_size'] = resolution |
|
self.device = device |
|
|
|
self.jpeger = DiffJPEG(differentiable=False).to(self.device) |
|
self.usm_sharpener = USMSharp().to(self.device) |
|
|
|
|
|
self.blur_kernel_size = kernel_opt['blur_kernel_size'] |
|
self.kernel_list = kernel_opt['kernel_list'] |
|
self.kernel_prob = kernel_opt['kernel_prob'] |
|
self.blur_sigma = kernel_opt['blur_sigma'] |
|
self.betag_range = kernel_opt['betag_range'] |
|
self.betap_range = kernel_opt['betap_range'] |
|
self.sinc_prob = kernel_opt['sinc_prob'] |
|
|
|
|
|
self.blur_kernel_size2 = kernel_opt['blur_kernel_size2'] |
|
self.kernel_list2 = kernel_opt['kernel_list2'] |
|
self.kernel_prob2 = kernel_opt['kernel_prob2'] |
|
self.blur_sigma2 = kernel_opt['blur_sigma2'] |
|
self.betag_range2 = kernel_opt['betag_range2'] |
|
self.betap_range2 = kernel_opt['betap_range2'] |
|
self.sinc_prob2 = kernel_opt['sinc_prob2'] |
|
|
|
|
|
self.final_sinc_prob = kernel_opt['final_sinc_prob'] |
|
|
|
self.kernel_range = [2 * v + 1 for v in range(3, 11)] |
|
|
|
self.pulse_tensor = torch.zeros(21, 21).float() |
|
self.pulse_tensor[10, 10] = 1 |
|
|
|
def get_kernel(self): |
|
|
|
|
|
kernel_size = random.choice(self.kernel_range) |
|
if np.random.uniform() < self.kernel_opt['sinc_prob']: |
|
|
|
if kernel_size < 13: |
|
omega_c = np.random.uniform(np.pi / 3, np.pi) |
|
else: |
|
omega_c = np.random.uniform(np.pi / 5, np.pi) |
|
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) |
|
else: |
|
kernel = random_mixed_kernels( |
|
self.kernel_list, |
|
self.kernel_prob, |
|
kernel_size, |
|
self.blur_sigma, |
|
self.blur_sigma, [-math.pi, math.pi], |
|
self.betag_range, |
|
self.betap_range, |
|
noise_range=None) |
|
|
|
pad_size = (21 - kernel_size) // 2 |
|
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) |
|
|
|
|
|
kernel_size = random.choice(self.kernel_range) |
|
if np.random.uniform() < self.kernel_opt['sinc_prob2']: |
|
if kernel_size < 13: |
|
omega_c = np.random.uniform(np.pi / 3, np.pi) |
|
else: |
|
omega_c = np.random.uniform(np.pi / 5, np.pi) |
|
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) |
|
else: |
|
kernel2 = random_mixed_kernels( |
|
self.kernel_list2, |
|
self.kernel_prob2, |
|
kernel_size, |
|
self.blur_sigma2, |
|
self.blur_sigma2, [-math.pi, math.pi], |
|
self.betag_range2, |
|
self.betap_range2, |
|
noise_range=None) |
|
|
|
|
|
pad_size = (21 - kernel_size) // 2 |
|
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) |
|
|
|
|
|
if np.random.uniform() < self.kernel_opt['final_sinc_prob']: |
|
kernel_size = random.choice(self.kernel_range) |
|
omega_c = np.random.uniform(np.pi / 3, np.pi) |
|
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21) |
|
sinc_kernel = torch.FloatTensor(sinc_kernel) |
|
else: |
|
sinc_kernel = self.pulse_tensor |
|
|
|
|
|
kernel = torch.FloatTensor(kernel) |
|
kernel2 = torch.FloatTensor(kernel2) |
|
|
|
return (kernel, kernel2, sinc_kernel) |
|
|
|
@torch.no_grad() |
|
def __call__(self, img_gt, kernels=None): |
|
''' |
|
:param: img_gt: BCHW, RGB, [0, 1] float32 tensor |
|
''' |
|
if kernels is None: |
|
kernel = [] |
|
kernel2 = [] |
|
sinc_kernel = [] |
|
for _ in range(img_gt.shape[0]): |
|
k, k2, sk = self.get_kernel() |
|
kernel.append(k) |
|
kernel2.append(k2) |
|
sinc_kernel.append(sk) |
|
kernel = torch.stack(kernel) |
|
kernel2 = torch.stack(kernel2) |
|
sinc_kernel = torch.stack(sinc_kernel) |
|
else: |
|
|
|
kernel, kernel2, sinc_kernel = kernels |
|
|
|
|
|
im_gt = img_gt.to(self.device) |
|
if self.degrade_opt['use_usm']: |
|
im_gt = self.usm_sharpener(im_gt) |
|
im_gt = im_gt.to(memory_format=torch.contiguous_format).float() |
|
kernel = kernel.to(self.device) |
|
kernel2 = kernel2.to(self.device) |
|
sinc_kernel = sinc_kernel.to(self.device) |
|
ori_h, ori_w = im_gt.size()[2:4] |
|
|
|
|
|
|
|
out = filter2D(im_gt, kernel) |
|
|
|
updown_type = random.choices( |
|
['up', 'down', 'keep'], |
|
self.degrade_opt['resize_prob'], |
|
)[0] |
|
if updown_type == 'up': |
|
scale = random.uniform(1, self.degrade_opt['resize_range'][1]) |
|
elif updown_type == 'down': |
|
scale = random.uniform(self.degrade_opt['resize_range'][0], 1) |
|
else: |
|
scale = 1 |
|
mode = random.choice(['area', 'bilinear', 'bicubic']) |
|
out = torch.nn.functional.interpolate(out, scale_factor=scale, mode=mode) |
|
|
|
gray_noise_prob = self.degrade_opt['gray_noise_prob'] |
|
if random.random() < self.degrade_opt['gaussian_noise_prob']: |
|
out = random_add_gaussian_noise_pt( |
|
out, |
|
sigma_range=self.degrade_opt['noise_range'], |
|
clip=True, |
|
rounds=False, |
|
gray_prob=gray_noise_prob, |
|
) |
|
else: |
|
out = random_add_poisson_noise_pt( |
|
out, |
|
scale_range=self.degrade_opt['poisson_scale_range'], |
|
gray_prob=gray_noise_prob, |
|
clip=True, |
|
rounds=False) |
|
|
|
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range']) |
|
out = torch.clamp(out, 0, 1) |
|
out = self.jpeger(out, quality=jpeg_p) |
|
|
|
|
|
|
|
if random.random() < self.degrade_opt['second_blur_prob']: |
|
out = out.contiguous() |
|
out = filter2D(out, kernel2) |
|
|
|
updown_type = random.choices( |
|
['up', 'down', 'keep'], |
|
self.degrade_opt['resize_prob2'], |
|
)[0] |
|
if updown_type == 'up': |
|
scale = random.uniform(1, self.degrade_opt['resize_range2'][1]) |
|
elif updown_type == 'down': |
|
scale = random.uniform(self.degrade_opt['resize_range2'][0], 1) |
|
else: |
|
scale = 1 |
|
mode = random.choice(['area', 'bilinear', 'bicubic']) |
|
out = torch.nn.functional.interpolate( |
|
out, |
|
size=(int(ori_h / self.degrade_opt['sf'] * scale), |
|
int(ori_w / self.degrade_opt['sf'] * scale)), |
|
mode=mode, |
|
) |
|
|
|
gray_noise_prob = self.degrade_opt['gray_noise_prob2'] |
|
if random.random() < self.degrade_opt['gaussian_noise_prob2']: |
|
out = random_add_gaussian_noise_pt( |
|
out, |
|
sigma_range=self.degrade_opt['noise_range2'], |
|
clip=True, |
|
rounds=False, |
|
gray_prob=gray_noise_prob, |
|
) |
|
else: |
|
out = random_add_poisson_noise_pt( |
|
out, |
|
scale_range=self.degrade_opt['poisson_scale_range2'], |
|
gray_prob=gray_noise_prob, |
|
clip=True, |
|
rounds=False, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if random.random() < 0.5: |
|
|
|
mode = random.choice(['area', 'bilinear', 'bicubic']) |
|
out = torch.nn.functional.interpolate( |
|
out, |
|
size=(ori_h // self.degrade_opt['sf'], |
|
ori_w // self.degrade_opt['sf']), |
|
mode=mode, |
|
) |
|
out = out.contiguous() |
|
out = filter2D(out, sinc_kernel) |
|
|
|
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range2']) |
|
out = torch.clamp(out, 0, 1) |
|
out = self.jpeger(out, quality=jpeg_p) |
|
else: |
|
|
|
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range2']) |
|
out = torch.clamp(out, 0, 1) |
|
out = self.jpeger(out, quality=jpeg_p) |
|
|
|
mode = random.choice(['area', 'bilinear', 'bicubic']) |
|
out = torch.nn.functional.interpolate( |
|
out, |
|
size=(ori_h // self.degrade_opt['sf'], |
|
ori_w // self.degrade_opt['sf']), |
|
mode=mode, |
|
) |
|
out = out.contiguous() |
|
out = filter2D(out, sinc_kernel) |
|
|
|
|
|
im_lq = torch.clamp(out, 0, 1.0) |
|
|
|
|
|
gt_size = self.degrade_opt['gt_size'] |
|
im_gt, im_lq = paired_random_crop(im_gt, im_lq, gt_size, self.degrade_opt['sf']) |
|
|
|
if self.degrade_opt['resize_lq']: |
|
im_lq = torch.nn.functional.interpolate( |
|
im_lq, |
|
size=(im_gt.size(-2), |
|
im_gt.size(-1)), |
|
mode='bicubic', |
|
) |
|
|
|
if random.random() < self.degrade_opt['no_degradation_prob'] or torch.isnan(im_lq).any(): |
|
im_lq = im_gt |
|
|
|
|
|
im_lq = im_lq.contiguous() |
|
im_lq = im_lq*2 - 1.0 |
|
im_gt = im_gt*2 - 1.0 |
|
|
|
if self.degrade_opt['random_size']: |
|
raise NotImplementedError |
|
im_lq, im_gt = self.randn_cropinput(im_lq, im_gt) |
|
|
|
im_lq = torch.clamp(im_lq, -1.0, 1.0) |
|
im_gt = torch.clamp(im_gt, -1.0, 1.0) |
|
|
|
return (im_lq, im_gt) |