File size: 14,220 Bytes
0305a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import cv2
import math
import numpy as np
import random
import torch
from torch.utils import data as data
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.data.transforms import augment
from basicsr.utils import img2tensor, DiffJPEG, USMSharp
from basicsr.utils.img_process_util import filter2D
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
from basicsr.data.transforms import paired_random_crop
AUGMENT_OPT = {
'use_hflip': False,
'use_rot': False
}
KERNEL_OPT = {
'blur_kernel_size': 21,
'kernel_list': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'],
'kernel_prob': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03],
'sinc_prob': 0.1,
'blur_sigma': [0.2, 3],
'betag_range': [0.5, 4],
'betap_range': [1, 2],
'blur_kernel_size2': 21,
'kernel_list2': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'],
'kernel_prob2': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03],
'sinc_prob2': 0.1,
'blur_sigma2': [0.2, 1.5],
'betag_range2': [0.5, 4],
'betap_range2': [1, 2],
'final_sinc_prob': 0.8,
}
DEGRADE_OPT = {
'resize_prob': [0.2, 0.7, 0.1], # up, down, keep
'resize_range': [0.15, 1.5],
'gaussian_noise_prob': 0.5,
'noise_range': [1, 30],
'poisson_scale_range': [0.05, 3],
'gray_noise_prob': 0.4,
'jpeg_range': [30, 95],
# the second degradation process
'second_blur_prob': 0.8,
'resize_prob2': [0.3, 0.4, 0.3], # up, down, keep
'resize_range2': [0.3, 1.2],
'gaussian_noise_prob2': 0.5,
'noise_range2': [1, 25],
'poisson_scale_range2': [0.05, 2.5],
'gray_noise_prob2': 0.4,
'jpeg_range2': [30, 95],
'gt_size': 512,
'no_degradation_prob': 0.01,
'use_usm': True,
'sf': 4,
'random_size': False,
'resize_lq': True
}
class RealESRGANDegradation:
def __init__(self, augment_opt=None, kernel_opt=None, degrade_opt=None, device='cuda', resolution=None):
if augment_opt is None:
augment_opt = AUGMENT_OPT
self.augment_opt = augment_opt
if kernel_opt is None:
kernel_opt = KERNEL_OPT
self.kernel_opt = kernel_opt
if degrade_opt is None:
degrade_opt = DEGRADE_OPT
self.degrade_opt = degrade_opt
if resolution is not None:
self.degrade_opt['gt_size'] = resolution
self.device = device
self.jpeger = DiffJPEG(differentiable=False).to(self.device)
self.usm_sharpener = USMSharp().to(self.device)
# blur settings for the first degradation
self.blur_kernel_size = kernel_opt['blur_kernel_size']
self.kernel_list = kernel_opt['kernel_list']
self.kernel_prob = kernel_opt['kernel_prob'] # a list for each kernel probability
self.blur_sigma = kernel_opt['blur_sigma']
self.betag_range = kernel_opt['betag_range'] # betag used in generalized Gaussian blur kernels
self.betap_range = kernel_opt['betap_range'] # betap used in plateau blur kernels
self.sinc_prob = kernel_opt['sinc_prob'] # the probability for sinc filters
# blur settings for the second degradation
self.blur_kernel_size2 = kernel_opt['blur_kernel_size2']
self.kernel_list2 = kernel_opt['kernel_list2']
self.kernel_prob2 = kernel_opt['kernel_prob2']
self.blur_sigma2 = kernel_opt['blur_sigma2']
self.betag_range2 = kernel_opt['betag_range2']
self.betap_range2 = kernel_opt['betap_range2']
self.sinc_prob2 = kernel_opt['sinc_prob2']
# a final sinc filter
self.final_sinc_prob = kernel_opt['final_sinc_prob']
self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21
# TODO: kernel range is now hard-coded, should be in the configure file
self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect
self.pulse_tensor[10, 10] = 1
def get_kernel(self):
# ------------------------ Generate kernels (used in the first degradation) ------------------------ #
kernel_size = random.choice(self.kernel_range)
if np.random.uniform() < self.kernel_opt['sinc_prob']:
# this sinc filter setting is for kernels ranging from [7, 21]
if kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
else:
kernel = random_mixed_kernels(
self.kernel_list,
self.kernel_prob,
kernel_size,
self.blur_sigma,
self.blur_sigma, [-math.pi, math.pi],
self.betag_range,
self.betap_range,
noise_range=None)
# pad kernel
pad_size = (21 - kernel_size) // 2
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
# ------------------------ Generate kernels (used in the second degradation) ------------------------ #
kernel_size = random.choice(self.kernel_range)
if np.random.uniform() < self.kernel_opt['sinc_prob2']:
if kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
else:
kernel2 = random_mixed_kernels(
self.kernel_list2,
self.kernel_prob2,
kernel_size,
self.blur_sigma2,
self.blur_sigma2, [-math.pi, math.pi],
self.betag_range2,
self.betap_range2,
noise_range=None)
# pad kernel
pad_size = (21 - kernel_size) // 2
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
# ------------------------------------- the final sinc kernel ------------------------------------- #
if np.random.uniform() < self.kernel_opt['final_sinc_prob']:
kernel_size = random.choice(self.kernel_range)
omega_c = np.random.uniform(np.pi / 3, np.pi)
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
sinc_kernel = torch.FloatTensor(sinc_kernel)
else:
sinc_kernel = self.pulse_tensor
# BGR to RGB, HWC to CHW, numpy to tensor
kernel = torch.FloatTensor(kernel)
kernel2 = torch.FloatTensor(kernel2)
return (kernel, kernel2, sinc_kernel)
@torch.no_grad()
def __call__(self, img_gt, kernels=None):
'''
:param: img_gt: BCHW, RGB, [0, 1] float32 tensor
'''
if kernels is None:
kernel = []
kernel2 = []
sinc_kernel = []
for _ in range(img_gt.shape[0]):
k, k2, sk = self.get_kernel()
kernel.append(k)
kernel2.append(k2)
sinc_kernel.append(sk)
kernel = torch.stack(kernel)
kernel2 = torch.stack(kernel2)
sinc_kernel = torch.stack(sinc_kernel)
else:
# kernels created in dataset.
kernel, kernel2, sinc_kernel = kernels
# ----------------------- Pre-process ----------------------- #
im_gt = img_gt.to(self.device)
if self.degrade_opt['use_usm']:
im_gt = self.usm_sharpener(im_gt)
im_gt = im_gt.to(memory_format=torch.contiguous_format).float()
kernel = kernel.to(self.device)
kernel2 = kernel2.to(self.device)
sinc_kernel = sinc_kernel.to(self.device)
ori_h, ori_w = im_gt.size()[2:4]
# ----------------------- The first degradation process ----------------------- #
# blur
out = filter2D(im_gt, kernel)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
self.degrade_opt['resize_prob'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, self.degrade_opt['resize_range'][1])
elif updown_type == 'down':
scale = random.uniform(self.degrade_opt['resize_range'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = torch.nn.functional.interpolate(out, scale_factor=scale, mode=mode)
# add noise
gray_noise_prob = self.degrade_opt['gray_noise_prob']
if random.random() < self.degrade_opt['gaussian_noise_prob']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=self.degrade_opt['noise_range'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.degrade_opt['poisson_scale_range'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range'])
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
out = self.jpeger(out, quality=jpeg_p)
# ----------------------- The second degradation process ----------------------- #
# blur
if random.random() < self.degrade_opt['second_blur_prob']:
out = out.contiguous()
out = filter2D(out, kernel2)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
self.degrade_opt['resize_prob2'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, self.degrade_opt['resize_range2'][1])
elif updown_type == 'down':
scale = random.uniform(self.degrade_opt['resize_range2'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = torch.nn.functional.interpolate(
out,
size=(int(ori_h / self.degrade_opt['sf'] * scale),
int(ori_w / self.degrade_opt['sf'] * scale)),
mode=mode,
)
# add noise
gray_noise_prob = self.degrade_opt['gray_noise_prob2']
if random.random() < self.degrade_opt['gaussian_noise_prob2']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=self.degrade_opt['noise_range2'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.degrade_opt['poisson_scale_range2'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False,
)
# JPEG compression + the final sinc filter
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
# as one operation.
# We consider two orders:
# 1. [resize back + sinc filter] + JPEG compression
# 2. JPEG compression + [resize back + sinc filter]
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
if random.random() < 0.5:
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = torch.nn.functional.interpolate(
out,
size=(ori_h // self.degrade_opt['sf'],
ori_w // self.degrade_opt['sf']),
mode=mode,
)
out = out.contiguous()
out = filter2D(out, sinc_kernel)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
else:
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = torch.nn.functional.interpolate(
out,
size=(ori_h // self.degrade_opt['sf'],
ori_w // self.degrade_opt['sf']),
mode=mode,
)
out = out.contiguous()
out = filter2D(out, sinc_kernel)
# clamp and round
im_lq = torch.clamp(out, 0, 1.0)
# random crop
gt_size = self.degrade_opt['gt_size']
im_gt, im_lq = paired_random_crop(im_gt, im_lq, gt_size, self.degrade_opt['sf'])
if self.degrade_opt['resize_lq']:
im_lq = torch.nn.functional.interpolate(
im_lq,
size=(im_gt.size(-2),
im_gt.size(-1)),
mode='bicubic',
)
if random.random() < self.degrade_opt['no_degradation_prob'] or torch.isnan(im_lq).any():
im_lq = im_gt
# sharpen self.gt again, as we have changed the self.gt with self._dequeue_and_enqueue
im_lq = im_lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract
im_lq = im_lq*2 - 1.0
im_gt = im_gt*2 - 1.0
if self.degrade_opt['random_size']:
raise NotImplementedError
im_lq, im_gt = self.randn_cropinput(im_lq, im_gt)
im_lq = torch.clamp(im_lq, -1.0, 1.0)
im_gt = torch.clamp(im_gt, -1.0, 1.0)
return (im_lq, im_gt) |