Spaces:
Sleeping
Sleeping
File size: 36,254 Bytes
0fdcb79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 |
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import ml_collections
import numpy as np
import torch
import torch.nn as nn
from typing import Dict, Optional, Tuple
from dockformerpp.utils import residue_constants
from dockformerpp.utils.feats import pseudo_beta_fn
from dockformerpp.utils.rigid_utils import Rotation, Rigid
from dockformerpp.utils.geometry.vector import Vec3Array, euclidean_distance
from dockformerpp.utils.tensor_utils import (
tree_map,
masked_mean,
permute_final_dims,
)
import logging
from dockformerpp.utils.tensor_utils import tensor_tree_map
logger = logging.getLogger(__name__)
def softmax_cross_entropy(logits, labels):
loss = -1 * torch.sum(
labels * torch.nn.functional.log_softmax(logits, dim=-1),
dim=-1,
)
return loss
def sigmoid_cross_entropy(logits, labels):
logits_dtype = logits.dtype
try:
logits = logits.double()
labels = labels.double()
except:
logits = logits.to(dtype=torch.float32)
labels = labels.to(dtype=torch.float32)
log_p = torch.nn.functional.logsigmoid(logits)
# log_p = torch.log(torch.sigmoid(logits))
log_not_p = torch.nn.functional.logsigmoid(-1 * logits)
# log_not_p = torch.log(torch.sigmoid(-logits))
loss = (-1. * labels) * log_p - (1. - labels) * log_not_p
loss = loss.to(dtype=logits_dtype)
return loss
def torsion_angle_loss(
a, # [*, N, 7, 2]
a_gt, # [*, N, 7, 2]
a_alt_gt, # [*, N, 7, 2]
):
# [*, N, 7]
norm = torch.norm(a, dim=-1)
# [*, N, 7, 2]
a = a / norm.unsqueeze(-1)
# [*, N, 7]
diff_norm_gt = torch.norm(a - a_gt, dim=-1)
diff_norm_alt_gt = torch.norm(a - a_alt_gt, dim=-1)
min_diff = torch.minimum(diff_norm_gt ** 2, diff_norm_alt_gt ** 2)
# [*]
l_torsion = torch.mean(min_diff, dim=(-1, -2))
l_angle_norm = torch.mean(torch.abs(norm - 1), dim=(-1, -2))
an_weight = 0.02
return l_torsion + an_weight * l_angle_norm
def compute_fape(
pred_frames: Rigid,
target_frames: Rigid,
frames_mask: torch.Tensor,
pred_positions: torch.Tensor,
target_positions: torch.Tensor,
positions_mask: torch.Tensor,
length_scale: float,
pair_mask: Optional[torch.Tensor] = None,
l1_clamp_distance: Optional[float] = None,
eps=1e-8,
) -> torch.Tensor:
"""
Computes FAPE loss.
Args:
pred_frames:
[*, N_frames] Rigid object of predicted frames
target_frames:
[*, N_frames] Rigid object of ground truth frames
frames_mask:
[*, N_frames] binary mask for the frames
pred_positions:
[*, N_pts, 3] predicted atom positions
target_positions:
[*, N_pts, 3] ground truth positions
positions_mask:
[*, N_pts] positions mask
length_scale:
Length scale by which the loss is divided
pair_mask:
[*, N_frames, N_pts] mask to use for
separating intra- from inter-chain losses.
l1_clamp_distance:
Cutoff above which distance errors are disregarded
eps:
Small value used to regularize denominators
Returns:
[*] loss tensor
"""
# [*, N_frames, N_pts, 3]
local_pred_pos = pred_frames.invert()[..., None].apply(
pred_positions[..., None, :, :],
)
local_target_pos = target_frames.invert()[..., None].apply(
target_positions[..., None, :, :],
)
error_dist = torch.sqrt(
torch.sum((local_pred_pos - local_target_pos) ** 2, dim=-1) + eps
)
if l1_clamp_distance is not None:
error_dist = torch.clamp(error_dist, min=0, max=l1_clamp_distance)
normed_error = error_dist / length_scale
normed_error = normed_error * frames_mask[..., None]
normed_error = normed_error * positions_mask[..., None, :]
if pair_mask is not None:
normed_error = normed_error * pair_mask
normed_error = torch.sum(normed_error, dim=(-1, -2))
mask = frames_mask[..., None] * positions_mask[..., None, :] * pair_mask
norm_factor = torch.sum(mask, dim=(-2, -1))
normed_error = normed_error / (eps + norm_factor)
else:
# FP16-friendly averaging. Roughly equivalent to:
#
# norm_factor = (
# torch.sum(frames_mask, dim=-1) *
# torch.sum(positions_mask, dim=-1)
# )
# normed_error = torch.sum(normed_error, dim=(-1, -2)) / (eps + norm_factor)
#
# ("roughly" because eps is necessarily duplicated in the latter)
normed_error = torch.sum(normed_error, dim=-1)
normed_error = (
normed_error / (eps + torch.sum(frames_mask, dim=-1))[..., None]
)
normed_error = torch.sum(normed_error, dim=-1)
normed_error = normed_error / (eps + torch.sum(positions_mask, dim=-1))
return normed_error
def backbone_loss(
backbone_rigid_tensor: torch.Tensor,
backbone_rigid_mask: torch.Tensor,
traj: torch.Tensor,
pair_mask: Optional[torch.Tensor] = None,
use_clamped_fape: Optional[torch.Tensor] = None,
clamp_distance: float = 10.0,
loss_unit_distance: float = 10.0,
eps: float = 1e-4,
**kwargs,
) -> torch.Tensor:
### need to check if the traj belongs to 4*4 matrix or a tensor_7
if traj.shape[-1] == 7:
pred_aff = Rigid.from_tensor_7(traj)
elif traj.shape[-1] == 4:
pred_aff = Rigid.from_tensor_4x4(traj)
pred_aff = Rigid(
Rotation(rot_mats=pred_aff.get_rots().get_rot_mats(), quats=None),
pred_aff.get_trans(),
)
# DISCREPANCY: DeepMind somehow gets a hold of a tensor_7 version of
# backbone tensor, normalizes it, and then turns it back to a rotation
# matrix. To avoid a potentially numerically unstable rotation matrix
# to quaternion conversion, we just use the original rotation matrix
# outright. This one hasn't been composed a bunch of times, though, so
# it might be fine.
gt_aff = Rigid.from_tensor_4x4(backbone_rigid_tensor)
fape_loss = compute_fape(
pred_aff,
gt_aff[None],
backbone_rigid_mask[None],
pred_aff.get_trans(),
gt_aff[None].get_trans(),
backbone_rigid_mask[None],
pair_mask=pair_mask,
l1_clamp_distance=clamp_distance,
length_scale=loss_unit_distance,
eps=eps,
)
if use_clamped_fape is not None:
unclamped_fape_loss = compute_fape(
pred_aff,
gt_aff[None],
backbone_rigid_mask[None],
pred_aff.get_trans(),
gt_aff[None].get_trans(),
backbone_rigid_mask[None],
pair_mask=pair_mask,
l1_clamp_distance=None,
length_scale=loss_unit_distance,
eps=eps,
)
fape_loss = fape_loss * use_clamped_fape + unclamped_fape_loss * (
1 - use_clamped_fape
)
# Average over the batch dimension
fape_loss = torch.mean(fape_loss)
return fape_loss
def sidechain_loss(
pred_sidechain_frames: torch.Tensor,
pred_sidechain_atom_pos: torch.Tensor,
rigidgroups_gt_frames: torch.Tensor,
rigidgroups_alt_gt_frames: torch.Tensor,
rigidgroups_gt_exists: torch.Tensor,
renamed_atom14_gt_positions: torch.Tensor,
renamed_atom14_gt_exists: torch.Tensor,
alt_naming_is_better: torch.Tensor,
clamp_distance: float = 10.0,
length_scale: float = 10.0,
eps: float = 1e-4,
only_include_ligand_atoms: bool = False,
**kwargs,
) -> torch.Tensor:
renamed_gt_frames = (
1.0 - alt_naming_is_better[..., None, None, None]
) * rigidgroups_gt_frames + alt_naming_is_better[
..., None, None, None
] * rigidgroups_alt_gt_frames
# Steamroll the inputs
pred_sidechain_frames = pred_sidechain_frames[-1] # get only the last layer of the strcuture module
batch_dims = pred_sidechain_frames.shape[:-4]
pred_sidechain_frames = pred_sidechain_frames.view(*batch_dims, -1, 4, 4)
pred_sidechain_frames = Rigid.from_tensor_4x4(pred_sidechain_frames)
renamed_gt_frames = renamed_gt_frames.view(*batch_dims, -1, 4, 4)
renamed_gt_frames = Rigid.from_tensor_4x4(renamed_gt_frames)
rigidgroups_gt_exists = rigidgroups_gt_exists.reshape(*batch_dims, -1)
pred_sidechain_atom_pos = pred_sidechain_atom_pos[-1]
pred_sidechain_atom_pos = pred_sidechain_atom_pos.view(*batch_dims, -1, 3)
renamed_atom14_gt_positions = renamed_atom14_gt_positions.view(
*batch_dims, -1, 3
)
renamed_atom14_gt_exists = renamed_atom14_gt_exists.view(*batch_dims, -1)
atom_mask_to_apply = renamed_atom14_gt_exists
if only_include_ligand_atoms:
ligand_atom14_mask = torch.repeat_interleave(ligand_mask, 14, dim=-1)
atom_mask_to_apply = atom_mask_to_apply * ligand_atom14_mask
fape = compute_fape(
pred_sidechain_frames,
renamed_gt_frames,
rigidgroups_gt_exists,
pred_sidechain_atom_pos,
renamed_atom14_gt_positions,
atom_mask_to_apply,
pair_mask=None,
l1_clamp_distance=clamp_distance,
length_scale=length_scale,
eps=eps,
)
return fape
def fape_bb(
out: Dict[str, torch.Tensor],
batch: Dict[str, torch.Tensor],
config: ml_collections.ConfigDict,
) -> torch.Tensor:
traj = out["sm"]["frames"]
bb_loss = backbone_loss(
traj=traj,
**{**batch, **config},
)
loss = torch.mean(bb_loss)
return loss
def fape_sidechain(
out: Dict[str, torch.Tensor],
batch: Dict[str, torch.Tensor],
config: ml_collections.ConfigDict,
) -> torch.Tensor:
sc_loss = sidechain_loss(
out["sm"]["sidechain_frames"],
out["sm"]["positions"],
**{**batch, **config},
)
loss = torch.mean(sc_loss)
return loss
def fape_interface(
out: Dict[str, torch.Tensor],
batch: Dict[str, torch.Tensor],
config: ml_collections.ConfigDict,
) -> torch.Tensor:
# sc_loss = sidechain_loss(
# out["sm"]["sidechain_frames"],
# out["sm"]["positions"],
# only_include_ligand_atoms=True,
# **{**batch, **config},
# )
# loss = torch.mean(sc_loss)
traj = out["sm"]["frames"]
full_structure_mask = batch["structural_mask"][..., None] * batch["structural_mask"][..., None, :]
pair_protein_r_mask = batch["protein_r_mask"][..., None] * batch["protein_r_mask"][..., None, :]
pair_protein_l_mask = batch["protein_l_mask"][..., None] * batch["protein_l_mask"][..., None, :]
inter_pair_protein_mask = full_structure_mask - (pair_protein_r_mask + pair_protein_l_mask)
bb_loss = backbone_loss(
traj=traj,
**{**batch, **config},
pair_mask=inter_pair_protein_mask
)
loss = torch.mean(bb_loss)
return loss
def supervised_chi_loss(
angles_sin_cos: torch.Tensor,
unnormalized_angles_sin_cos: torch.Tensor,
aatype: torch.Tensor,
structural_mask: torch.Tensor,
chi_mask: torch.Tensor,
chi_angles_sin_cos: torch.Tensor,
chi_weight: float,
angle_norm_weight: float,
eps=1e-6,
**kwargs,
) -> torch.Tensor:
"""
Implements Algorithm 27 (torsionAngleLoss)
Args:
angles_sin_cos:
[*, N, 7, 2] predicted angles
unnormalized_angles_sin_cos:
The same angles, but unnormalized
aatype:
[*, N] residue indices
structural_mask:
[*, N] protein mask
chi_mask:
[*, N, 7] angle mask
chi_angles_sin_cos:
[*, N, 7, 2] ground truth angles
chi_weight:
Weight for the angle component of the loss
angle_norm_weight:
Weight for the normalization component of the loss
Returns:
[*] loss tensor
"""
pred_angles = angles_sin_cos[..., 3:, :]
residue_type_one_hot = torch.nn.functional.one_hot(
aatype,
residue_constants.restype_num + 1,
)
chi_pi_periodic = torch.einsum(
"...ij,jk->ik",
residue_type_one_hot.type(angles_sin_cos.dtype),
angles_sin_cos.new_tensor(residue_constants.chi_pi_periodic),
)
true_chi = chi_angles_sin_cos[None]
shifted_mask = (1 - 2 * chi_pi_periodic).unsqueeze(-1)
true_chi_shifted = shifted_mask * true_chi
sq_chi_error = torch.sum((true_chi - pred_angles) ** 2, dim=-1)
sq_chi_error_shifted = torch.sum(
(true_chi_shifted - pred_angles) ** 2, dim=-1
)
sq_chi_error = torch.minimum(sq_chi_error, sq_chi_error_shifted)
# The ol' switcheroo
sq_chi_error = sq_chi_error.permute(
*range(len(sq_chi_error.shape))[1:-2], 0, -2, -1
)
sq_chi_loss = masked_mean(
chi_mask[..., None, :, :], sq_chi_error, dim=(-1, -2, -3)
)
loss = chi_weight * sq_chi_loss
angle_norm = torch.sqrt(
torch.sum(unnormalized_angles_sin_cos ** 2, dim=-1) + eps
)
norm_error = torch.abs(angle_norm - 1.0)
norm_error = norm_error.permute(
*range(len(norm_error.shape))[1:-2], 0, -2, -1
)
angle_norm_loss = masked_mean(
structural_mask[..., None, :, None], norm_error, dim=(-1, -2, -3)
)
loss = loss + angle_norm_weight * angle_norm_loss
# Average over the batch dimension
loss = torch.mean(loss)
return loss
def compute_plddt(logits: torch.Tensor) -> torch.Tensor:
num_bins = logits.shape[-1]
bin_width = 1.0 / num_bins
bounds = torch.arange(
start=0.5 * bin_width, end=1.0, step=bin_width, device=logits.device
)
probs = torch.nn.functional.softmax(logits, dim=-1)
pred_lddt_ca = torch.sum(
probs * bounds.view(*((1,) * len(probs.shape[:-1])), *bounds.shape),
dim=-1,
)
return pred_lddt_ca * 100
def lddt(
all_atom_pred_pos: torch.Tensor,
all_atom_positions: torch.Tensor,
all_atom_mask: torch.Tensor,
cutoff: float = 15.0,
eps: float = 1e-10,
per_residue: bool = True,
) -> torch.Tensor:
n = all_atom_mask.shape[-2]
dmat_true = torch.sqrt(
eps
+ torch.sum(
(
all_atom_positions[..., None, :]
- all_atom_positions[..., None, :, :]
)
** 2,
dim=-1,
)
)
dmat_pred = torch.sqrt(
eps
+ torch.sum(
(
all_atom_pred_pos[..., None, :]
- all_atom_pred_pos[..., None, :, :]
)
** 2,
dim=-1,
)
)
dists_to_score = (
(dmat_true < cutoff)
* all_atom_mask
* permute_final_dims(all_atom_mask, (1, 0))
* (1.0 - torch.eye(n, device=all_atom_mask.device))
)
dist_l1 = torch.abs(dmat_true - dmat_pred)
score = (
(dist_l1 < 0.5).type(dist_l1.dtype)
+ (dist_l1 < 1.0).type(dist_l1.dtype)
+ (dist_l1 < 2.0).type(dist_l1.dtype)
+ (dist_l1 < 4.0).type(dist_l1.dtype)
)
score = score * 0.25
dims = (-1,) if per_residue else (-2, -1)
norm = 1.0 / (eps + torch.sum(dists_to_score, dim=dims))
score = norm * (eps + torch.sum(dists_to_score * score, dim=dims))
return score
def lddt_ca(
all_atom_pred_pos: torch.Tensor,
all_atom_positions: torch.Tensor,
all_atom_mask: torch.Tensor,
cutoff: float = 15.0,
eps: float = 1e-10,
per_residue: bool = True,
) -> torch.Tensor:
ca_pos = residue_constants.atom_order["CA"]
all_atom_pred_pos = all_atom_pred_pos[..., ca_pos, :]
all_atom_positions = all_atom_positions[..., ca_pos, :]
all_atom_mask = all_atom_mask[..., ca_pos: (ca_pos + 1)] # keep dim
return lddt(
all_atom_pred_pos,
all_atom_positions,
all_atom_mask,
cutoff=cutoff,
eps=eps,
per_residue=per_residue,
)
def lddt_loss(
logits: torch.Tensor,
all_atom_pred_pos: torch.Tensor,
atom37_gt_positions: torch.Tensor,
atom37_atom_exists_in_gt: torch.Tensor,
resolution: torch.Tensor,
cutoff: float = 15.0,
no_bins: int = 50,
min_resolution: float = 0.1,
max_resolution: float = 3.0,
eps: float = 1e-10,
**kwargs,
) -> torch.Tensor:
# remove ligand
logits = logits[:, :atom37_atom_exists_in_gt.shape[1], :]
ca_pos = residue_constants.atom_order["CA"]
all_atom_pred_pos = all_atom_pred_pos[..., ca_pos, :]
atom37_gt_positions = atom37_gt_positions[..., ca_pos, :]
atom37_atom_exists_in_gt = atom37_atom_exists_in_gt[..., ca_pos: (ca_pos + 1)] # keep dim
score = lddt(
all_atom_pred_pos,
atom37_gt_positions,
atom37_atom_exists_in_gt,
cutoff=cutoff,
eps=eps
)
# TODO: Remove after initial pipeline testing
score = torch.nan_to_num(score, nan=torch.nanmean(score))
score[score < 0] = 0
score = score.detach()
bin_index = torch.floor(score * no_bins).long()
bin_index = torch.clamp(bin_index, max=(no_bins - 1))
lddt_ca_one_hot = torch.nn.functional.one_hot(
bin_index, num_classes=no_bins
)
errors = softmax_cross_entropy(logits, lddt_ca_one_hot)
atom37_atom_exists_in_gt = atom37_atom_exists_in_gt.squeeze(-1)
loss = torch.sum(errors * atom37_atom_exists_in_gt, dim=-1) / (
eps + torch.sum(atom37_atom_exists_in_gt, dim=-1)
)
loss = loss * (
(resolution >= min_resolution) & (resolution <= max_resolution)
)
# Average over the batch dimension
loss = torch.mean(loss)
return loss
def distogram_loss(
logits,
gt_pseudo_beta_joined,
gt_pseudo_beta_joined_mask,
min_bin=2.3125,
max_bin=21.6875,
no_bins=64,
eps=1e-6,
**kwargs,
):
boundaries = torch.linspace(
min_bin,
max_bin,
no_bins - 1,
device=logits.device,
)
boundaries = boundaries ** 2
dists = torch.sum(
(gt_pseudo_beta_joined[..., None, :] - gt_pseudo_beta_joined[..., None, :, :]) ** 2,
dim=-1,
keepdims=True,
)
true_bins = torch.sum(dists > boundaries, dim=-1)
errors = softmax_cross_entropy(
logits,
torch.nn.functional.one_hot(true_bins, no_bins),
)
square_mask = gt_pseudo_beta_joined_mask[..., None] * gt_pseudo_beta_joined_mask[..., None, :]
# FP16-friendly sum. Equivalent to:
# mean = (torch.sum(errors * square_mask, dim=(-1, -2)) /
# (eps + torch.sum(square_mask, dim=(-1, -2))))
denom = eps + torch.sum(square_mask, dim=(-1, -2))
mean = errors * square_mask
mean = torch.sum(mean, dim=-1)
mean = mean / denom[..., None]
mean = torch.sum(mean, dim=-1)
# Average over the batch dimensions
mean = torch.mean(mean)
return mean
def inter_contact_loss(
logits: torch.Tensor,
gt_inter_contacts: torch.Tensor,
inter_pair_mask: torch.Tensor,
pos_class_weight: float = 200.0,
contact_distance: float = 5.0,
**kwargs,
):
logits = logits.squeeze(-1)
bce_loss = torch.nn.functional.binary_cross_entropy_with_logits(logits, gt_inter_contacts, reduction='none',
pos_weight=logits.new_tensor([pos_class_weight]))
masked_loss = bce_loss * inter_pair_mask
final_loss = masked_loss.sum() / inter_pair_mask.sum()
return final_loss
def affinity_loss(
logits,
affinity,
affinity_loss_factor,
min_bin=0,
max_bin=15,
no_bins=32,
**kwargs,
):
boundaries = torch.linspace(
min_bin,
max_bin,
no_bins - 1,
device=logits.device,
)
true_bins = torch.sum(affinity > boundaries, dim=-1)
errors = softmax_cross_entropy(
logits,
torch.nn.functional.one_hot(true_bins, no_bins),
)
# print("errors dim", errors.shape, affinity_loss_factor.shape, errors)
after_factor = errors * affinity_loss_factor.squeeze()
if affinity_loss_factor.sum() > 0.1:
mean_val = after_factor.sum() / affinity_loss_factor.sum()
else:
# If no affinity in batch - get a very small loss. the factor also makes the loss small
mean_val = after_factor.sum() * 1e-3
# print("after factor", after_factor.shape, after_factor, affinity_loss_factor.sum(), mean_val)
return mean_val
def _calculate_bin_centers(boundaries: torch.Tensor):
step = boundaries[1] - boundaries[0]
bin_centers = boundaries + step / 2
bin_centers = torch.cat(
[bin_centers, (bin_centers[-1] + step).unsqueeze(-1)], dim=0
)
return bin_centers
def _calculate_expected_aligned_error(
alignment_confidence_breaks: torch.Tensor,
aligned_distance_error_probs: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
bin_centers = _calculate_bin_centers(alignment_confidence_breaks)
return (
torch.sum(aligned_distance_error_probs * bin_centers, dim=-1),
bin_centers[-1],
)
def compute_predicted_aligned_error(
logits: torch.Tensor,
max_bin: int = 31,
no_bins: int = 64,
**kwargs,
) -> Dict[str, torch.Tensor]:
"""Computes aligned confidence metrics from logits.
Args:
logits: [*, num_res, num_res, num_bins] the logits output from
PredictedAlignedErrorHead.
max_bin: Maximum bin value
no_bins: Number of bins
Returns:
aligned_confidence_probs: [*, num_res, num_res, num_bins] the predicted
aligned error probabilities over bins for each residue pair.
predicted_aligned_error: [*, num_res, num_res] the expected aligned distance
error for each pair of residues.
max_predicted_aligned_error: [*] the maximum predicted error possible.
"""
boundaries = torch.linspace(
0, max_bin, steps=(no_bins - 1), device=logits.device
)
aligned_confidence_probs = torch.nn.functional.softmax(logits, dim=-1)
(
predicted_aligned_error,
max_predicted_aligned_error,
) = _calculate_expected_aligned_error(
alignment_confidence_breaks=boundaries,
aligned_distance_error_probs=aligned_confidence_probs,
)
return {
"aligned_confidence_probs": aligned_confidence_probs,
"predicted_aligned_error": predicted_aligned_error,
"max_predicted_aligned_error": max_predicted_aligned_error,
}
def compute_tm(
logits: torch.Tensor,
residue_weights: Optional[torch.Tensor] = None,
asym_id: Optional[torch.Tensor] = None,
interface: bool = False,
max_bin: int = 31,
no_bins: int = 64,
eps: float = 1e-8,
**kwargs,
) -> torch.Tensor:
if residue_weights is None:
residue_weights = logits.new_ones(logits.shape[-2])
boundaries = torch.linspace(
0, max_bin, steps=(no_bins - 1), device=logits.device
)
bin_centers = _calculate_bin_centers(boundaries)
clipped_n = max(torch.sum(residue_weights), 19)
d0 = 1.24 * (clipped_n - 15) ** (1.0 / 3) - 1.8
probs = torch.nn.functional.softmax(logits, dim=-1)
tm_per_bin = 1.0 / (1 + (bin_centers ** 2) / (d0 ** 2))
predicted_tm_term = torch.sum(probs * tm_per_bin, dim=-1)
n = residue_weights.shape[-1]
pair_mask = residue_weights.new_ones((n, n), dtype=torch.int32)
if interface and (asym_id is not None):
if len(asym_id.shape) > 1:
assert len(asym_id.shape) <= 2
batch_size = asym_id.shape[0]
pair_mask = residue_weights.new_ones((batch_size, n, n), dtype=torch.int32)
pair_mask *= (asym_id[..., None] != asym_id[..., None, :]).to(dtype=pair_mask.dtype)
predicted_tm_term *= pair_mask
pair_residue_weights = pair_mask * (
residue_weights[..., None, :] * residue_weights[..., :, None]
)
denom = eps + torch.sum(pair_residue_weights, dim=-1, keepdims=True)
normed_residue_mask = pair_residue_weights / denom
per_alignment = torch.sum(predicted_tm_term * normed_residue_mask, dim=-1)
weighted = per_alignment * residue_weights
argmax = (weighted == torch.max(weighted)).nonzero()[0]
return per_alignment[tuple(argmax)]
def compute_renamed_ground_truth(
batch: Dict[str, torch.Tensor],
atom14_pred_positions: torch.Tensor,
eps=1e-10,
) -> Dict[str, torch.Tensor]:
"""
Find optimal renaming of ground truth based on the predicted positions.
Alg. 26 "renameSymmetricGroundTruthAtoms"
This renamed ground truth is then used for all losses,
such that each loss moves the atoms in the same direction.
Args:
batch: Dictionary containing:
* atom14_gt_positions: Ground truth positions.
* atom14_alt_gt_positions: Ground truth positions with renaming swaps.
* atom14_atom_is_ambiguous: 1.0 for atoms that are affected by
renaming swaps.
* atom14_gt_exists: Mask for which atoms exist in ground truth.
* atom14_alt_gt_exists: Mask for which atoms exist in ground truth
after renaming.
* atom14_atom_exists: Mask for whether each atom is part of the given
amino acid type.
atom14_pred_positions: Array of atom positions in global frame with shape
Returns:
Dictionary containing:
alt_naming_is_better: Array with 1.0 where alternative swap is better.
renamed_atom14_gt_positions: Array of optimal ground truth positions
after renaming swaps are performed.
renamed_atom14_gt_exists: Mask after renaming swap is performed.
"""
pred_dists = torch.sqrt(
eps
+ torch.sum(
(
atom14_pred_positions[..., None, :, None, :]
- atom14_pred_positions[..., None, :, None, :, :]
)
** 2,
dim=-1,
)
)
atom14_gt_positions = batch["atom14_gt_positions"]
gt_dists = torch.sqrt(
eps
+ torch.sum(
(
atom14_gt_positions[..., None, :, None, :]
- atom14_gt_positions[..., None, :, None, :, :]
)
** 2,
dim=-1,
)
)
atom14_alt_gt_positions = batch["atom14_alt_gt_positions"]
alt_gt_dists = torch.sqrt(
eps
+ torch.sum(
(
atom14_alt_gt_positions[..., None, :, None, :]
- atom14_alt_gt_positions[..., None, :, None, :, :]
)
** 2,
dim=-1,
)
)
lddt = torch.sqrt(eps + (pred_dists - gt_dists) ** 2)
alt_lddt = torch.sqrt(eps + (pred_dists - alt_gt_dists) ** 2)
atom14_gt_exists = batch["atom14_atom_exists_in_gt"]
atom14_atom_is_ambiguous = batch["atom14_atom_is_ambiguous"]
mask = (
atom14_gt_exists[..., None, :, None]
* atom14_atom_is_ambiguous[..., None, :, None]
* atom14_gt_exists[..., None, :, None, :]
* (1.0 - atom14_atom_is_ambiguous[..., None, :, None, :])
)
per_res_lddt = torch.sum(mask * lddt, dim=(-1, -2, -3))
alt_per_res_lddt = torch.sum(mask * alt_lddt, dim=(-1, -2, -3))
fp_type = atom14_pred_positions.dtype
alt_naming_is_better = (alt_per_res_lddt < per_res_lddt).type(fp_type)
renamed_atom14_gt_positions = (
1.0 - alt_naming_is_better[..., None, None]
) * atom14_gt_positions + alt_naming_is_better[
..., None, None
] * atom14_alt_gt_positions
renamed_atom14_gt_mask = (
1.0 - alt_naming_is_better[..., None]
) * atom14_gt_exists + alt_naming_is_better[..., None] * batch[
"atom14_alt_gt_exists"
]
return {
"alt_naming_is_better": alt_naming_is_better,
"renamed_atom14_gt_positions": renamed_atom14_gt_positions,
"renamed_atom14_gt_exists": renamed_atom14_gt_mask,
}
def binding_site_loss(
logits: torch.Tensor,
binding_site_mask: torch.Tensor,
structural_mask: torch.Tensor,
pos_class_weight: float,
**kwargs,
) -> torch.Tensor:
logits = logits.squeeze(-1)
bce_loss = torch.nn.functional.binary_cross_entropy_with_logits(logits, binding_site_mask, reduction='none',
pos_weight=logits.new_tensor([pos_class_weight]))
masked_loss = bce_loss * structural_mask
final_loss = masked_loss.sum() / structural_mask.sum()
return final_loss
def chain_center_of_mass_loss(
all_atom_pred_pos: torch.Tensor,
all_atom_positions: torch.Tensor,
all_atom_mask: torch.Tensor,
asym_id: torch.Tensor,
clamp_distance: float = -4.0,
weight: float = 0.05,
eps: float = 1e-10, **kwargs
) -> torch.Tensor:
"""
Computes chain centre-of-mass loss. Implements section 2.5, eqn 1 in the Multimer paper.
Args:
all_atom_pred_pos:
[*, N_pts, 37, 3] All-atom predicted atom positions
all_atom_positions:
[*, N_pts, 37, 3] Ground truth all-atom positions
all_atom_mask:
[*, N_pts, 37] All-atom positions mask
asym_id:
[*, N_pts] Chain asym IDs
clamp_distance:
Cutoff above which distance errors are disregarded
weight:
Weight for loss
eps:
Small value used to regularize denominators
Returns:
[*] loss tensor
"""
ca_pos = residue_constants.atom_order["CA"]
all_atom_pred_pos = all_atom_pred_pos[..., ca_pos, :]
all_atom_positions = all_atom_positions[..., ca_pos, :]
all_atom_mask = all_atom_mask[..., ca_pos: (ca_pos + 1)] # keep dim
one_hot = torch.nn.functional.one_hot(asym_id.long()).to(dtype=all_atom_mask.dtype)
one_hot = one_hot * all_atom_mask
chain_pos_mask = one_hot.transpose(-2, -1)
chain_exists = torch.any(chain_pos_mask, dim=-1).to(dtype=all_atom_positions.dtype)
def get_chain_center_of_mass(pos):
center_sum = (chain_pos_mask[..., None] * pos[..., None, :, :]).sum(dim=-2)
centers = center_sum / (torch.sum(chain_pos_mask, dim=-1, keepdim=True) + eps)
return Vec3Array.from_array(centers)
pred_centers = get_chain_center_of_mass(all_atom_pred_pos) # [B, NC, 3]
true_centers = get_chain_center_of_mass(all_atom_positions) # [B, NC, 3]
pred_dists = euclidean_distance(pred_centers[..., None, :], pred_centers[..., :, None], epsilon=eps)
true_dists = euclidean_distance(true_centers[..., None, :], true_centers[..., :, None], epsilon=eps)
losses = torch.clamp((weight * (pred_dists - true_dists - clamp_distance)), max=0) ** 2
loss_mask = chain_exists[..., :, None] * chain_exists[..., None, :]
loss = masked_mean(loss_mask, losses, dim=(-1, -2))
return loss
class AlphaFoldLoss(nn.Module):
"""Aggregation of the various losses described in the supplement"""
def __init__(self, config):
super(AlphaFoldLoss, self).__init__()
self.config = config
def loss(self, out, batch, _return_breakdown=False):
"""
Rename previous forward() as loss()
so that can be reused in the subclass
"""
if "renamed_atom14_gt_positions" not in out.keys():
batch.update(
compute_renamed_ground_truth(
batch,
out["sm"]["positions"][-1],
)
)
loss_fns = {
"distogram": lambda: distogram_loss(
logits=out["distogram_logits"],
**{**batch, **self.config.distogram},
),
"affinity2d": lambda: affinity_loss(
logits=out["affinity_2d_logits"],
**{**batch, **self.config.affinity2d},
),
"affinity_cls": lambda: affinity_loss(
logits=out["affinity_cls_logits"],
**{**batch, **self.config.affinity_cls},
),
"binding_site": lambda: binding_site_loss(
logits=out["binding_site_logits"],
**{**batch, **self.config.binding_site},
),
"inter_contact": lambda: inter_contact_loss(
logits=out["inter_contact_logits"],
**{**batch, **self.config.inter_contact},
),
# backbone is based on frames so only works on protein
"fape_backbone": lambda: fape_bb(
out,
batch,
self.config.fape_backbone,
),
"fape_sidechain": lambda: fape_sidechain(
out,
batch,
self.config.fape_sidechain,
),
"fape_interface": lambda: fape_interface(
out,
batch,
self.config.fape_interface,
),
"plddt_loss": lambda: lddt_loss(
logits=out["lddt_logits"],
all_atom_pred_pos=out["final_atom_positions"],
**{**batch, **self.config.plddt_loss},
),
"supervised_chi": lambda: supervised_chi_loss(
out["sm"]["angles"],
out["sm"]["unnormalized_angles"],
**{**batch, **self.config.supervised_chi},
),
}
if self.config.chain_center_of_mass.enabled:
loss_fns["chain_center_of_mass"] = lambda: chain_center_of_mass_loss(
all_atom_pred_pos=out["final_atom_positions"],
**{**batch, **self.config.chain_center_of_mass},
)
cum_loss = 0.
losses = {}
loss_time_took = {}
for loss_name, loss_fn in loss_fns.items():
start_time = time.time()
weight = self.config[loss_name].weight
loss = loss_fn()
if torch.isnan(loss) or torch.isinf(loss):
# for k,v in batch.items():
# if torch.any(torch.isnan(v)) or torch.any(torch.isinf(v)):
# logging.warning(f"{k}: is nan")
# logging.warning(f"{loss_name}: {loss}")
logging.warning(f"{loss_name} loss is NaN. Skipping...")
loss = loss.new_tensor(0., requires_grad=True)
# else:
cum_loss = cum_loss + weight * loss
losses[loss_name] = loss.detach().clone()
loss_time_took[loss_name] = time.time() - start_time
losses["unscaled_loss"] = cum_loss.detach().clone()
# print("loss took: ", round(time.time() % 10000, 3),
# sorted(loss_time_took.items(), key=lambda x: x[1], reverse=True))
# Scale the loss by the square root of the minimum of the crop size and
# the (average) sequence length. See subsection 1.9.
seq_len = torch.mean(batch["seq_length"].float())
crop_len = batch["aatype"].shape[-1]
cum_loss = cum_loss * torch.sqrt(min(seq_len, crop_len))
losses["loss"] = cum_loss.detach().clone()
if not _return_breakdown:
return cum_loss
return cum_loss, losses
def forward(self, out, batch, _return_breakdown=False):
if not _return_breakdown:
cum_loss = self.loss(out, batch, _return_breakdown)
return cum_loss
else:
cum_loss, losses = self.loss(out, batch, _return_breakdown)
return cum_loss, losses
|