File size: 5,036 Bytes
0fdcb79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math

import numpy as np
import torch
import torch.nn as nn
from typing import Dict, Union

from dockformerpp.utils import protein
import dockformerpp.utils.residue_constants as rc
from dockformerpp.utils.geometry import rigid_matrix_vector, rotation_matrix, vector
from dockformerpp.utils.rigid_utils import Rotation, Rigid
from dockformerpp.utils.tensor_utils import (
    batched_gather,
    one_hot,
    tree_map,
    tensor_tree_map,
)


def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks):
    # rc.restype_order["X"] defines a ligand, and the atom position used is the CA
    is_gly_or_lig = (aatype == rc.restype_order["G"]) | (aatype == rc.restype_order["Z"])
    ca_idx = rc.atom_order["CA"]
    cb_idx = rc.atom_order["CB"]
    pseudo_beta = torch.where(
        is_gly_or_lig[..., None].expand(*((-1,) * len(is_gly_or_lig.shape)), 3),
        all_atom_positions[..., ca_idx, :],
        all_atom_positions[..., cb_idx, :],
    )

    if all_atom_masks is not None:
        pseudo_beta_mask = torch.where(
            is_gly_or_lig,
            all_atom_masks[..., ca_idx],
            all_atom_masks[..., cb_idx],
        )
        return pseudo_beta, pseudo_beta_mask
    else:
        return pseudo_beta


def atom14_to_atom37(atom14, batch):
    atom37_data = batched_gather(
        atom14,
        batch["residx_atom37_to_atom14"],
        dim=-2,
        no_batch_dims=len(atom14.shape[:-2]),
    )

    atom37_data = atom37_data * batch["atom37_atom_exists"][..., None]

    return atom37_data


def torsion_angles_to_frames(
    r: Union[Rigid, rigid_matrix_vector.Rigid3Array],
    alpha: torch.Tensor,
    aatype: torch.Tensor,
    rrgdf: torch.Tensor,
):

    rigid_type = type(r)

    # [*, N, 8, 4, 4]
    default_4x4 = rrgdf[aatype, ...]

    # [*, N, 8] transformations, i.e.
    #   One [*, N, 8, 3, 3] rotation matrix and
    #   One [*, N, 8, 3]    translation matrix
    default_r = rigid_type.from_tensor_4x4(default_4x4)

    bb_rot = alpha.new_zeros((*((1,) * len(alpha.shape[:-1])), 2))
    bb_rot[..., 1] = 1

    # [*, N, 8, 2]
    alpha = torch.cat(
        [bb_rot.expand(*alpha.shape[:-2], -1, -1), alpha], dim=-2
    )

    # [*, N, 8, 3, 3]
    # Produces rotation matrices of the form:
    # [
    #   [1, 0  , 0  ],
    #   [0, a_2,-a_1],
    #   [0, a_1, a_2]
    # ]
    # This follows the original code rather than the supplement, which uses
    # different indices.

    all_rots = alpha.new_zeros(default_r.shape + (4, 4))
    all_rots[..., 0, 0] = 1
    all_rots[..., 1, 1] = alpha[..., 1]
    all_rots[..., 1, 2] = -alpha[..., 0]
    all_rots[..., 2, 1:3] = alpha

    all_rots = rigid_type.from_tensor_4x4(all_rots)
    all_frames = default_r.compose(all_rots)

    chi2_frame_to_frame = all_frames[..., 5]
    chi3_frame_to_frame = all_frames[..., 6]
    chi4_frame_to_frame = all_frames[..., 7]

    chi1_frame_to_bb = all_frames[..., 4]
    chi2_frame_to_bb = chi1_frame_to_bb.compose(chi2_frame_to_frame)
    chi3_frame_to_bb = chi2_frame_to_bb.compose(chi3_frame_to_frame)
    chi4_frame_to_bb = chi3_frame_to_bb.compose(chi4_frame_to_frame)

    all_frames_to_bb = rigid_type.cat(
        [
            all_frames[..., :5],
            chi2_frame_to_bb.unsqueeze(-1),
            chi3_frame_to_bb.unsqueeze(-1),
            chi4_frame_to_bb.unsqueeze(-1),
        ],
        dim=-1,
    )
    
    all_frames_to_global = r[..., None].compose(all_frames_to_bb)

    return all_frames_to_global


def frames_and_literature_positions_to_atom14_pos(
    r: Union[Rigid, rigid_matrix_vector.Rigid3Array],
    aatype: torch.Tensor,
    default_frames,
    group_idx,
    atom_mask,
    lit_positions,
):
    # [*, N, 14, 4, 4]
    default_4x4 = default_frames[aatype, ...]

    # [*, N, 14]
    group_mask = group_idx[aatype, ...]

    # [*, N, 14, 8]
    group_mask = nn.functional.one_hot(
        group_mask,
        num_classes=default_frames.shape[-3],
    )

    # [*, N, 14, 8]
    t_atoms_to_global = r[..., None, :] * group_mask

    # [*, N, 14]
    t_atoms_to_global = t_atoms_to_global.map_tensor_fn(
        lambda x: torch.sum(x, dim=-1)
    )

    # [*, N, 14]
    atom_mask = atom_mask[aatype, ...].unsqueeze(-1)

    # [*, N, 14, 3]
    lit_positions = lit_positions[aatype, ...]
    pred_positions = t_atoms_to_global.apply(lit_positions)
    pred_positions = pred_positions * atom_mask

    return pred_positions