File size: 5,272 Bytes
0fdcb79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partialmethod
from typing import Optional
from abc import ABC, abstractmethod

import torch
import torch.nn as nn

from dockformerpp.model.primitives import Linear, LayerNorm
from dockformerpp.utils.precision_utils import is_fp16_enabled
from dockformerpp.utils.tensor_utils import permute_final_dims


class BaseTriangleMultiplicativeUpdate(nn.Module, ABC):
    """
    Implements Algorithms 11 and 12.
    """
    @abstractmethod
    def __init__(self, c_z, c_hidden, _outgoing):
        """
        Args:
            c_z:
                Input channel dimension
            c:
                Hidden channel dimension
        """
        super(BaseTriangleMultiplicativeUpdate, self).__init__()
        self.c_z = c_z
        self.c_hidden = c_hidden
        self._outgoing = _outgoing

        self.linear_g = Linear(self.c_z, self.c_z, init="gating")
        self.linear_z = Linear(self.c_hidden, self.c_z, init="final")

        self.layer_norm_in = LayerNorm(self.c_z)
        self.layer_norm_out = LayerNorm(self.c_hidden)

        self.sigmoid = nn.Sigmoid()

    def _combine_projections(self,
        a: torch.Tensor,
        b: torch.Tensor,
    ) -> torch.Tensor:
        if(self._outgoing):
            a = permute_final_dims(a, (2, 0, 1))
            b = permute_final_dims(b, (2, 1, 0))
        else:
            a = permute_final_dims(a, (2, 1, 0))
            b = permute_final_dims(b,  (2, 0, 1))

        p = torch.matmul(a, b)

        return permute_final_dims(p, (1, 2, 0))

    @abstractmethod
    def forward(self,
        z: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        inplace_safe: bool = False,
        _add_with_inplace: bool = False
    ) -> torch.Tensor:
        """
        Args:
            x:
                [*, N_res, N_res, C_z] input tensor
            mask:
                [*, N_res, N_res] input mask
        Returns:
            [*, N_res, N_res, C_z] output tensor
        """
        pass


class TriangleMultiplicativeUpdate(BaseTriangleMultiplicativeUpdate):
    """
    Implements Algorithms 11 and 12.
    """
    def __init__(self, c_z, c_hidden, _outgoing=True):
        """
        Args:
            c_z:
                Input channel dimension
            c:
                Hidden channel dimension
        """
        super(TriangleMultiplicativeUpdate, self).__init__(c_z=c_z,
                                                           c_hidden=c_hidden,
                                                           _outgoing=_outgoing)

        self.linear_a_p = Linear(self.c_z, self.c_hidden)
        self.linear_a_g = Linear(self.c_z, self.c_hidden, init="gating")
        self.linear_b_p = Linear(self.c_z, self.c_hidden)
        self.linear_b_g = Linear(self.c_z, self.c_hidden, init="gating")

    def forward(self, 
        z: torch.Tensor, 
        mask: Optional[torch.Tensor] = None,
        inplace_safe: bool = False,
        _add_with_inplace: bool = False,
    ) -> torch.Tensor:
        """
        Args:
            x:
                [*, N_res, N_res, C_z] input tensor
            mask:
                [*, N_res, N_res] input mask
        Returns:
            [*, N_res, N_res, C_z] output tensor
        """

        if mask is None:
            mask = z.new_ones(z.shape[:-1])

        mask = mask.unsqueeze(-1)
        
        z = self.layer_norm_in(z)
        a = mask
        a = a * self.sigmoid(self.linear_a_g(z)) 
        a = a * self.linear_a_p(z)
        b = mask
        b = b * self.sigmoid(self.linear_b_g(z))
        b = b * self.linear_b_p(z)

        # Prevents overflow of torch.matmul in combine projections in
        # reduced-precision modes
        a_std = a.std()
        b_std = b.std()
        if(is_fp16_enabled() and a_std != 0. and b_std != 0.):
            a = a / a.std()
            b = b / b.std()

        if(is_fp16_enabled()):
            with torch.cuda.amp.autocast(enabled=False):
                x = self._combine_projections(a.float(), b.float())
        else:
            x = self._combine_projections(a, b)
        
        del a, b
        x = self.layer_norm_out(x)
        x = self.linear_z(x)
        g = self.sigmoid(self.linear_g(z))
        x = x * g

        return x


class TriangleMultiplicationOutgoing(TriangleMultiplicativeUpdate):
    """
    Implements Algorithm 11.
    """
    __init__ = partialmethod(TriangleMultiplicativeUpdate.__init__, _outgoing=True)


class TriangleMultiplicationIncoming(TriangleMultiplicativeUpdate):
    """
    Implements Algorithm 12.
    """
    __init__ = partialmethod(TriangleMultiplicativeUpdate.__init__, _outgoing=False)