Spaces:
Sleeping
Sleeping
File size: 11,286 Bytes
0fdcb79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import weakref
import torch
import torch.nn as nn
from dockformerpp.utils.tensor_utils import masked_mean
from dockformerpp.model.embedders import (
StructureInputEmbedder,
RecyclingEmbedder,
)
from dockformerpp.model.evoformer import EvoformerStack
from dockformerpp.model.heads import AuxiliaryHeads
from dockformerpp.model.structure_module import StructureModule
import dockformerpp.utils.residue_constants as residue_constants
from dockformerpp.utils.feats import (
pseudo_beta_fn,
atom14_to_atom37,
)
from dockformerpp.utils.tensor_utils import (
add,
tensor_tree_map,
)
class AlphaFold(nn.Module):
"""
Alphafold 2.
Implements Algorithm 2 (but with training).
"""
def __init__(self, config):
"""
Args:
config:
A dict-like config object (like the one in config.py)
"""
super(AlphaFold, self).__init__()
self.globals = config.globals
self.config = config.model
# Main trunk + structure module
self.input_embedder = StructureInputEmbedder(
**self.config["structure_input_embedder"],
)
self.recycling_embedder = RecyclingEmbedder(
**self.config["recycling_embedder"],
)
self.evoformer = EvoformerStack(
**self.config["evoformer_stack"],
)
self.structure_module = StructureModule(
**self.config["structure_module"],
)
self.aux_heads = AuxiliaryHeads(
self.config["heads"],
)
def tolerance_reached(self, prev_pos, next_pos, mask, eps=1e-8) -> bool:
"""
Early stopping criteria based on criteria used in
AF2Complex: https://www.nature.com/articles/s41467-022-29394-2
Args:
prev_pos: Previous atom positions in atom37/14 representation
next_pos: Current atom positions in atom37/14 representation
mask: 1-D sequence mask
eps: Epsilon used in square root calculation
Returns:
Whether to stop recycling early based on the desired tolerance.
"""
def distances(points):
"""Compute all pairwise distances for a set of points."""
d = points[..., None, :] - points[..., None, :, :]
return torch.sqrt(torch.sum(d ** 2, dim=-1))
if self.config.recycle_early_stop_tolerance < 0:
return False
ca_idx = residue_constants.atom_order['CA']
sq_diff = (distances(prev_pos[..., ca_idx, :]) - distances(next_pos[..., ca_idx, :])) ** 2
mask = mask[..., None] * mask[..., None, :]
sq_diff = masked_mean(mask=mask, value=sq_diff, dim=list(range(len(mask.shape))))
diff = torch.sqrt(sq_diff + eps).item()
return diff <= self.config.recycle_early_stop_tolerance
def iteration(self, feats, prevs, _recycle=True):
# Primary output dictionary
outputs = {}
# This needs to be done manually for DeepSpeed's sake
dtype = next(self.parameters()).dtype
for k in feats:
if feats[k].dtype == torch.float32:
feats[k] = feats[k].to(dtype=dtype)
# Grab some data about the input
batch_dims, n_total = feats["token_mask"].shape
device = feats["token_mask"].device
print("doing sample of size", feats["token_mask"].shape,
feats["protein_r_mask"].sum(dim=1), feats["protein_l_mask"].sum(dim=1))
# Controls whether the model uses in-place operations throughout
# The dual condition accounts for activation checkpoints
# inplace_safe = not (self.training or torch.is_grad_enabled())
inplace_safe = False # so we don't need attn_core_inplace_cuda
# Prep some features
token_mask = feats["token_mask"]
pair_mask = token_mask[..., None] * token_mask[..., None, :]
# Initialize the single and pair representations
# m: [*, 1, n_total, C_m]
# z: [*, n_total, n_total, C_z]
m, z = self.input_embedder(
feats["token_mask"],
feats["protein_r_mask"],
feats["protein_l_mask"],
feats["target_feat"],
feats["input_positions"],
feats["residue_index"],
feats["distogram_mask"],
inplace_safe=inplace_safe,
)
# Unpack the recycling embeddings. Removing them from the list allows
# them to be freed further down in this function, saving memory
m_1_prev, z_prev, x_prev = reversed([prevs.pop() for _ in range(3)])
# Initialize the recycling embeddings, if needs be
if None in [m_1_prev, z_prev, x_prev]:
# [*, N, C_m]
m_1_prev = m.new_zeros(
(batch_dims, n_total, self.config.structure_input_embedder.c_m),
requires_grad=False,
)
# [*, N, N, C_z]
z_prev = z.new_zeros(
(batch_dims, n_total, n_total, self.config.structure_input_embedder.c_z),
requires_grad=False,
)
# [*, N, 3]
x_prev = z.new_zeros(
(batch_dims, n_total, residue_constants.atom_type_num, 3),
requires_grad=False,
)
# shape == [1, n_total, 37, 3]
pseudo_beta_or_lig_x_prev = pseudo_beta_fn(feats["aatype"], x_prev, None).to(dtype=z.dtype)
# m_1_prev_emb: [*, N, C_m]
# z_prev_emb: [*, N, N, C_z]
m_1_prev_emb, z_prev_emb = self.recycling_embedder(
m_1_prev,
z_prev,
pseudo_beta_or_lig_x_prev,
inplace_safe=inplace_safe,
)
del pseudo_beta_or_lig_x_prev
# [*, S_c, N, C_m]
m += m_1_prev_emb
# [*, N, N, C_z]
z = add(z, z_prev_emb, inplace=inplace_safe)
# Deletions like these become significant for inference with large N,
# where they free unused tensors and remove references to others such
# that they can be offloaded later
del m_1_prev, z_prev, m_1_prev_emb, z_prev_emb
# Run single + pair embeddings through the trunk of the network
# m: [*, N, C_m]
# z: [*, N, N, C_z]
# s: [*, N, C_s]
m, z, s = self.evoformer(
m,
z,
single_mask=token_mask.to(dtype=m.dtype),
pair_mask=pair_mask.to(dtype=z.dtype),
use_lma=self.globals.use_lma,
inplace_safe=inplace_safe,
_mask_trans=self.config._mask_trans,
)
outputs["pair"] = z
outputs["single"] = s
del z
# Predict 3D structure
outputs["sm"] = self.structure_module(
outputs,
feats["aatype"],
mask=token_mask.to(dtype=s.dtype),
inplace_safe=inplace_safe,
)
outputs["final_atom_positions"] = atom14_to_atom37(
outputs["sm"]["positions"][-1], feats
)
outputs["final_atom_mask"] = feats["atom37_atom_exists"]
# Save embeddings for use during the next recycling iteration
# [*, N, C_m]
m_1_prev = m[..., 0, :, :]
# [*, N, N, C_z]
z_prev = outputs["pair"]
# TODO bshor: early stop depends on is_multimer, but I don't think it must
early_stop = False
# if self.globals.is_multimer:
# early_stop = self.tolerance_reached(x_prev, outputs["final_atom_positions"], seq_mask)
del x_prev
# [*, N, 3]
x_prev = outputs["final_atom_positions"]
return outputs, m_1_prev, z_prev, x_prev, early_stop
def forward(self, batch):
"""
Args:
batch:
Dictionary of arguments outlined in Algorithm 2. Keys must
include the official names of the features in the
supplement subsection 1.2.9.
The final dimension of each input must have length equal to
the number of recycling iterations.
Features (without the recycling dimension):
"aatype" ([*, N_res]):
Contrary to the supplement, this tensor of residue
indices is not one-hot.
"protein_target_feat" ([*, N_res, C_tf])
One-hot encoding of the target sequence. C_tf is
config.model.input_embedder.tf_dim.
"residue_index" ([*, N_res])
Tensor whose final dimension consists of
consecutive indices from 0 to N_res.
"token_mask" ([*, N_token])
1-D token mask
"pair_mask" ([*, N_token, N_token])
2-D pair mask
"""
# Initialize recycling embeddings
m_1_prev, z_prev, x_prev = None, None, None
prevs = [m_1_prev, z_prev, x_prev]
is_grad_enabled = torch.is_grad_enabled()
# Main recycling loop
num_iters = batch["aatype"].shape[-1]
early_stop = False
num_recycles = 0
for cycle_no in range(num_iters):
# Select the features for the current recycling cycle
fetch_cur_batch = lambda t: t[..., cycle_no]
feats = tensor_tree_map(fetch_cur_batch, batch)
# Enable grad iff we're training and it's the final recycling layer
is_final_iter = cycle_no == (num_iters - 1) or early_stop
with torch.set_grad_enabled(is_grad_enabled and is_final_iter):
if is_final_iter:
# Sidestep AMP bug (PyTorch issue #65766)
if torch.is_autocast_enabled():
torch.clear_autocast_cache()
# Run the next iteration of the model
outputs, m_1_prev, z_prev, x_prev, early_stop = self.iteration(
feats,
prevs,
_recycle=(num_iters > 1)
)
num_recycles += 1
if not is_final_iter:
del outputs
prevs = [m_1_prev, z_prev, x_prev]
del m_1_prev, z_prev, x_prev
else:
break
outputs["num_recycles"] = torch.tensor(num_recycles, device=feats["aatype"].device)
# Run auxiliary heads, remove the recycling dimension batch properties
outputs.update(self.aux_heads(outputs, batch["inter_pair_mask"][..., 0], batch["affinity_mask"][..., 0]))
return outputs
|