Spaces:
Running
on
L4
Running
on
L4
File size: 19,748 Bytes
bca3a49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import json
import sys
from typing import Optional
# This import must be on top to set the environment variables before importing other modules
import env_consts
import time
import os
from lightning.pytorch import seed_everything
import lightning.pytorch as pl
import torch
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.profilers import AdvancedProfiler
from dockformer.config import model_config
from dockformer.data.data_modules import OpenFoldDataModule, DockFormerDataModule
from dockformer.model.model import AlphaFold
from dockformer.utils import residue_constants
from dockformer.utils.exponential_moving_average import ExponentialMovingAverage
from dockformer.utils.loss import AlphaFoldLoss, lddt_ca
from dockformer.utils.lr_schedulers import AlphaFoldLRScheduler
from dockformer.utils.script_utils import get_latest_checkpoint
from dockformer.utils.superimposition import superimpose
from dockformer.utils.tensor_utils import tensor_tree_map
from dockformer.utils.validation_metrics import (
drmsd,
gdt_ts,
gdt_ha,
rmsd,
)
class ModelWrapper(pl.LightningModule):
def __init__(self, config):
super(ModelWrapper, self).__init__()
self.config = config
self.model = AlphaFold(config)
self.loss = AlphaFoldLoss(config.loss)
self.ema = ExponentialMovingAverage(
model=self.model, decay=config.ema.decay
)
self.cached_weights = None
self.last_lr_step = -1
self.aggregated_metrics = {}
self.log_agg_every_n_steps = 50 # match Trainer(log_every_n_steps=50)
def forward(self, batch):
return self.model(batch)
def _log(self, loss_breakdown, batch, outputs, train=True):
phase = "train" if train else "val"
for loss_name, indiv_loss in loss_breakdown.items():
# print("logging loss", loss_name, indiv_loss, flush=True)
self.log(
f"{phase}/{loss_name}",
indiv_loss,
on_step=train, on_epoch=(not train), logger=True, sync_dist=True
)
if train:
agg_name = f"{phase}/{loss_name}_agg"
if agg_name not in self.aggregated_metrics:
self.aggregated_metrics[agg_name] = []
self.aggregated_metrics[agg_name].append(float(indiv_loss))
self.log(
f"{phase}/{loss_name}_epoch",
indiv_loss,
on_step=False, on_epoch=True, logger=True, sync_dist=True
)
# print("logging validation metrics", flush=True)
with torch.no_grad():
other_metrics = self._compute_validation_metrics(
batch,
outputs,
superimposition_metrics=(not train)
)
for k, v in other_metrics.items():
# print("logging metric", k, v, flush=True)
if train:
agg_name = f"{phase}/{k}_agg"
if agg_name not in self.aggregated_metrics:
self.aggregated_metrics[agg_name] = []
self.aggregated_metrics[agg_name].append(float(torch.mean(v)))
self.log(
f"{phase}/{k}",
torch.mean(v),
on_step=False, on_epoch=True, logger=True, sync_dist=True
)
if train and any([len(v) >= self.log_agg_every_n_steps for v in self.aggregated_metrics.values()]):
for k, v in self.aggregated_metrics.items():
print("logging agg", k, len(v), sum(v) / len(v), flush=True)
self.log(k, sum(v) / len(v), on_step=True, on_epoch=False, logger=True, sync_dist=True)
self.aggregated_metrics[k] = []
def training_step(self, batch, batch_idx):
if self.ema.device != batch["aatype"].device:
self.ema.to(batch["aatype"].device)
# ground_truth = batch.pop('gt_features', None)
# Run the model
# print("running model", round(time.time() % 10000, 3), flush=True)
outputs = self(batch)
# Remove the recycling dimension
batch = tensor_tree_map(lambda t: t[..., -1], batch)
# print("running loss", round(time.time() % 10000, 3), flush=True)
# Compute loss
loss, loss_breakdown = self.loss(
outputs, batch, _return_breakdown=True
)
# Log it
self._log(loss_breakdown, batch, outputs)
# print("loss done", round(time.time() % 10000, 3), flush=True)
return loss
def on_before_zero_grad(self, *args, **kwargs):
self.ema.update(self.model)
def validation_step(self, batch, batch_idx):
# At the start of validation, load the EMA weights
if self.cached_weights is None:
# model.state_dict() contains references to model weights rather
# than copies. Therefore, we need to clone them before calling
# load_state_dict().
clone_param = lambda t: t.detach().clone()
self.cached_weights = tensor_tree_map(clone_param, self.model.state_dict())
self.model.load_state_dict(self.ema.state_dict()["params"])
# Run the model
outputs = self(batch)
batch = tensor_tree_map(lambda t: t[..., -1], batch)
batch["use_clamped_fape"] = 0.
# Compute loss and other metrics
_, loss_breakdown = self.loss(
outputs, batch, _return_breakdown=True
)
self._log(loss_breakdown, batch, outputs, train=False)
def on_validation_epoch_end(self):
# Restore the model weights to normal
self.model.load_state_dict(self.cached_weights)
self.cached_weights = None
def _compute_validation_metrics(self,
batch,
outputs,
superimposition_metrics=False
):
metrics = {}
all_gt_coords = batch["atom37_gt_positions"]
all_pred_coords = outputs["final_atom_positions"]
all_atom_mask = batch["atom37_atom_exists_in_gt"]
rough_protein_atom_mask = torch.repeat_interleave(batch["protein_mask"], 37, dim=-1).view(*all_atom_mask.shape)
protein_gt_coords = all_gt_coords * rough_protein_atom_mask[..., None]
protein_pred_coords = all_pred_coords * rough_protein_atom_mask[..., None]
protein_all_atom_mask = all_atom_mask * rough_protein_atom_mask
rough_ligand_atom_mask = torch.repeat_interleave(batch["ligand_mask"], 37, dim=-1).view(*all_atom_mask.shape)
ligand_gt_coords = all_gt_coords * rough_ligand_atom_mask[..., None]
ligand_pred_coords = all_pred_coords * rough_ligand_atom_mask[..., None]
ligand_all_atom_mask = all_atom_mask * rough_ligand_atom_mask
# This is super janky for superimposition. Fix later
protein_gt_coords_masked = protein_gt_coords * protein_all_atom_mask[..., None]
protein_pred_coords_masked = protein_pred_coords * protein_all_atom_mask[..., None]
ca_pos = residue_constants.atom_order["CA"]
protein_gt_coords_masked_ca = protein_gt_coords_masked[..., ca_pos, :]
protein_pred_coords_masked_ca = protein_pred_coords_masked[..., ca_pos, :]
protein_atom_mask_ca = protein_all_atom_mask[..., ca_pos]
ligand_gt_coords_single_atom = ligand_gt_coords[..., ca_pos, :]
ligand_pred_coords_single_atom = ligand_pred_coords[..., ca_pos, :]
ligand_gt_mask_single_atom = ligand_all_atom_mask[..., ca_pos]
lddt_ca_score = lddt_ca(
protein_pred_coords,
protein_gt_coords,
protein_all_atom_mask,
eps=self.config.globals.eps,
per_residue=False,
)
metrics["lddt_ca"] = lddt_ca_score
drmsd_ca_score = drmsd(
protein_pred_coords_masked_ca,
protein_gt_coords_masked_ca,
mask=protein_atom_mask_ca, # still required here to compute n
)
metrics["drmsd_ca"] = drmsd_ca_score
drmsd_intra_ligand_score = drmsd(
ligand_pred_coords_single_atom,
ligand_gt_coords_single_atom,
mask=ligand_gt_mask_single_atom,
)
metrics["drmsd_intra_ligand"] = drmsd_intra_ligand_score
# --- inter contacts
gt_contacts = batch["gt_inter_contacts"]
pred_contacts = torch.sigmoid(outputs["inter_contact_logits"].clone().detach()).squeeze(-1)
pred_contacts = (pred_contacts > 0.5).float()
pred_contacts = pred_contacts * batch["inter_pair_mask"]
# Calculate True Positives, False Positives, and False Negatives
tp = torch.sum((gt_contacts == 1) & (pred_contacts == 1))
fp = torch.sum((gt_contacts == 0) & (pred_contacts == 1))
fn = torch.sum((gt_contacts == 1) & (pred_contacts == 0))
# Calculate Recall and Precision
recall = tp / (tp + fn) if (tp + fn) > 0 else tp.float()
precision = tp / (tp + fp) if (tp + fp) > 0 else tp.float()
metrics["inter_contacts_recall"] = recall.clone().detach()
metrics["inter_contacts_precision"] = precision.clone().detach()
# print("inter_contacts recall", recall, "precision", precision, tp, fp, fn, torch.ones_like(gt_contacts).sum())
# --- Affinity
if True or batch["affinity_loss_factor"].sum() > 0.1:
# print("affinity loss factor", batch["affinity_loss_factor"].sum())
gt_affinity = batch["affinity"].squeeze(-1)
affinity_linspace = torch.linspace(0, 15, 32, device=batch["affinity"].device)
pred_affinity_1d = torch.sum(
torch.softmax(outputs["affinity_1d_logits"].clone().detach(), -1) * affinity_linspace, dim=-1)
pred_affinity_2d = torch.sum(
torch.softmax(outputs["affinity_2d_logits"].clone().detach(), -1) * affinity_linspace, dim=-1)
pred_affinity_cls = torch.sum(
torch.softmax(outputs["affinity_cls_logits"].clone().detach(), -1) * affinity_linspace, dim=-1)
aff_loss_factor = batch["affinity_loss_factor"].squeeze()
metrics["affinity_dist_1d"] = (torch.abs(gt_affinity - pred_affinity_1d) * aff_loss_factor).sum() / aff_loss_factor.sum()
metrics["affinity_dist_2d"] = (torch.abs(gt_affinity - pred_affinity_2d) * aff_loss_factor).sum() / aff_loss_factor.sum()
metrics["affinity_dist_cls"] = (torch.abs(gt_affinity - pred_affinity_cls) * aff_loss_factor).sum() / aff_loss_factor.sum()
metrics["affinity_dist_avg"] = (torch.abs(gt_affinity - (pred_affinity_cls + pred_affinity_1d + pred_affinity_2d) / 3) * aff_loss_factor).sum() / aff_loss_factor.sum()
# print("affinity metrics", gt_affinity, pred_affinity_2d, aff_loss_factor, metrics["affinity_dist_1d"],
# metrics["affinity_dist_2d"], metrics["affinity_dist_cls"], metrics["affinity_dist_avg"])
else:
# print("skipping affinity metrics")
pass
if superimposition_metrics:
superimposed_pred, alignment_rmsd, rots, transs = superimpose(
protein_gt_coords_masked_ca, protein_pred_coords_masked_ca, protein_atom_mask_ca,
)
gdt_ts_score = gdt_ts(
superimposed_pred, protein_gt_coords_masked_ca, protein_atom_mask_ca
)
gdt_ha_score = gdt_ha(
superimposed_pred, protein_gt_coords_masked_ca, protein_atom_mask_ca
)
metrics["protein_alignment_rmsd"] = alignment_rmsd
metrics["gdt_ts"] = gdt_ts_score
metrics["gdt_ha"] = gdt_ha_score
superimposed_ligand_coords = ligand_pred_coords_single_atom @ rots + transs[:, None, :]
ligand_alignment_rmsds = rmsd(ligand_gt_coords_single_atom, superimposed_ligand_coords,
mask=ligand_gt_mask_single_atom)
metrics["ligand_alignment_rmsd"] = ligand_alignment_rmsds.mean()
metrics["ligand_alignment_rmsd_under_2"] = torch.mean((ligand_alignment_rmsds < 2).float())
metrics["ligand_alignment_rmsd_under_5"] = torch.mean((ligand_alignment_rmsds < 5).float())
print("ligand rmsd:", ligand_alignment_rmsds)
return metrics
def configure_optimizers(self,
learning_rate: Optional[float] = None,
eps: float = 1e-5,
) -> torch.optim.Adam:
if learning_rate is None:
learning_rate = self.config.globals.max_lr
optimizer = torch.optim.Adam(
self.model.parameters(),
lr=learning_rate,
eps=eps
)
if self.last_lr_step != -1:
for group in optimizer.param_groups:
if 'initial_lr' not in group:
group['initial_lr'] = learning_rate
lr_scheduler = AlphaFoldLRScheduler(
optimizer,
last_epoch=self.last_lr_step,
max_lr=self.config.globals.max_lr,
start_decay_after_n_steps=10000,
decay_every_n_steps=10000,
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": lr_scheduler,
"interval": "step",
"name": "AlphaFoldLRScheduler",
}
}
def on_load_checkpoint(self, checkpoint):
ema = checkpoint["ema"]
self.ema.load_state_dict(ema)
def on_save_checkpoint(self, checkpoint):
checkpoint["ema"] = self.ema.state_dict()
def resume_last_lr_step(self, lr_step):
self.last_lr_step = lr_step
def override_config(base_config, overriding_config):
for k, v in overriding_config.items():
if isinstance(v, dict):
base_config[k] = override_config(base_config[k], v)
else:
base_config[k] = v
return base_config
def train(override_config_path: str):
run_config = json.load(open(override_config_path, "r"))
seed = 42
seed_everything(seed, workers=True)
output_dir = run_config["train_output_dir"]
os.makedirs(output_dir, exist_ok=True)
print("Starting train", time.time())
config = model_config(
run_config.get("stage", "initial_training"),
train=True,
low_prec=True
)
config = override_config(config, run_config.get("override_conf", {}))
accumulate_grad_batches = run_config.get("accumulate_grad_batches", 1)
print("config loaded", time.time())
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device_name = "cuda" if torch.cuda.is_available() else "cpu"
# device_name = "mps" if device_name == "cpu" and torch.backends.mps.is_available() else device_name
model_module = ModelWrapper(config)
print("model loaded", time.time())
# device_name = "cpu"
# for debugging memory:
# torch.cuda.memory._record_memory_history()
if "train_input_dir" in run_config:
data_module = OpenFoldDataModule(
config=config.data,
batch_seed=seed,
train_data_dir=run_config["train_input_dir"],
val_data_dir=run_config["val_input_dir"],
train_epoch_len=run_config.get("train_epoch_len", 1000),
)
else:
data_module = DockFormerDataModule(
config=config.data,
batch_seed=seed,
train_data_file=run_config["train_input_file"],
val_data_file=run_config["val_input_file"],
)
print("data module loaded", time.time())
checkpoint_dir = os.path.join(output_dir, "checkpoint")
ckpt_path = run_config.get("ckpt_path", get_latest_checkpoint(checkpoint_dir))
if ckpt_path:
print(f"Resuming from checkpoint: {ckpt_path}")
sd = torch.load(ckpt_path)
last_global_step = int(sd['global_step'])
model_module.resume_last_lr_step(last_global_step)
# Do we need this?
data_module.prepare_data()
data_module.setup("fit")
callbacks = []
mc = ModelCheckpoint(
dirpath=checkpoint_dir,
# every_n_epochs=1,
every_n_train_steps=250,
auto_insert_metric_name=False,
save_top_k=1,
save_on_train_epoch_end=True, # before validation
)
mc2 = ModelCheckpoint(
dirpath=checkpoint_dir, # Directory to save checkpoints
filename="step{step}_lig_rmsd{val/ligand_alignment_rmsd:.2f}", # Filename format for best
monitor="val/ligand_alignment_rmsd", # Metric to monitor
mode="min", # We want the lowest `ligand_rmsd`
save_top_k=1, # Save only the best model based on `ligand_rmsd`
every_n_epochs=1, # Save a checkpoint every epoch
auto_insert_metric_name=False
)
callbacks.append(mc)
callbacks.append(mc2)
lr_monitor = LearningRateMonitor(logging_interval="step")
callbacks.append(lr_monitor)
loggers = []
wandb_project_name = "EvoDocker3"
wandb_run_id_path = os.path.join(output_dir, "wandb_run_id.txt")
# Initialize WandbLogger and save run_id
local_rank = int(os.getenv('LOCAL_RANK', os.getenv("SLURM_PROCID", '0')))
global_rank = int(os.getenv('GLOBAL_RANK', os.getenv("SLURM_LOCALID", '0')))
print("ranks", os.getenv('LOCAL_RANK', 'd0'), os.getenv('local_rank', 'd0'), os.getenv('GLOBAL_RANK', 'd0'),
os.getenv('global_rank', 'd0'), os.getenv("SLURM_PROCID", 'd0'), os.getenv('SLURM_LOCALID', 'd0'), flush=True)
if local_rank == 0 and global_rank == 0 and not os.path.exists(wandb_run_id_path):
wandb_logger = WandbLogger(project=wandb_project_name, save_dir=output_dir)
with open(wandb_run_id_path, 'w') as f:
f.write(wandb_logger.experiment.id)
wandb_logger.experiment.config.update(run_config, allow_val_change=True)
else:
# Necessary for multi-node training https://github.com/rstrudel/segmenter/issues/22
while not os.path.exists(wandb_run_id_path):
print(f"Waiting for run_id file to be created ({local_rank})", flush=True)
time.sleep(1)
with open(wandb_run_id_path, 'r') as f:
run_id = f.read().strip()
wandb_logger = WandbLogger(project=wandb_project_name, save_dir=output_dir, resume='must', id=run_id)
loggers.append(wandb_logger)
strategy_params = {"strategy": "auto"}
if run_config.get("multi_node", False):
strategy_params["strategy"] = "ddp"
# strategy_params["strategy"] = "ddp_find_unused_parameters_true" # this causes issues with checkpointing...
strategy_params["num_nodes"] = run_config["multi_node"]["num_nodes"]
strategy_params["devices"] = run_config["multi_node"]["devices"]
trainer = pl.Trainer(
accelerator=device_name,
default_root_dir=output_dir,
**strategy_params,
reload_dataloaders_every_n_epochs=1,
accumulate_grad_batches=accumulate_grad_batches,
check_val_every_n_epoch=run_config.get("check_val_every_n_epoch", 10),
callbacks=callbacks,
logger=loggers,
# profiler=AdvancedProfiler(),
)
print("Starting fit", time.time())
trainer.fit(
model_module,
datamodule=data_module,
ckpt_path=ckpt_path,
)
# profiler_results = trainer.profiler.summary()
# print(profiler_results)
# torch.cuda.memory._dump_snapshot("my_train_snapshot.pickle")
# view on https://pytorch.org/memory_viz
if __name__ == "__main__":
if len(sys.argv) > 1:
train(sys.argv[1])
else:
train(os.path.join(os.path.dirname(__file__), "run_config.json"))
|