Spaces:
Running
on
L4
Running
on
L4
File size: 34,579 Bytes
446e400 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 |
import json
import os
import shutil
import random
import sys
import time
from typing import List, Tuple, Optional
import Bio.PDB
import Bio.SeqUtils
import pandas as pd
import numpy as np
import requests
from rdkit import Chem
from rdkit.Chem import AllChem
BASE_FOLDER = "/tmp/"
OUTPUT_FOLDER = f"{BASE_FOLDER}/processed"
# https://storage.googleapis.com/plinder/2024-06/v2/index/annotation_table.parquet
PLINDER_ANNOTATIONS = f'{BASE_FOLDER}/raw_data/2024-06_v2_index_annotation_table.parquet'
# https://storage.googleapis.com/plinder/2024-06/v2/splits/split.parquet
PLINDER_SPLITS = f'{BASE_FOLDER}/raw_data/2024-06_v2_splits_split.parquet'
# https://console.cloud.google.com/storage/browser/_details/plinder/2024-06/v2/links/kind%3Dapo/links.parquet
PLINDER_LINKED_APO_MAP = f"{BASE_FOLDER}/raw_data/2024-06_v2_links_kind=apo_links.parquet"
# https://console.cloud.google.com/storage/browser/_details/plinder/2024-06/v2/links/kind%3Dpred/links.parquet
PLINDER_LINKED_PRED_MAP = f"{BASE_FOLDER}/raw_data/2024-06_v2_links_kind=pred_links.parquet"
# https://storage.googleapis.com/plinder/2024-06/v2/linked_structures/apo.zip
PLINDER_LINKED_APO_STRUCTURES = f"{BASE_FOLDER}/raw_data/2024-06_v2_linked_structures_apo"
# https://storage.googleapis.com/plinder/2024-06/v2/linked_structures/pred.zip
PLINDER_LINKED_PRED_STRUCTURES = f"{BASE_FOLDER}/raw_data/2024-06_v2_linked_structures_pred"
GSUTIL_PATH = f"{BASE_FOLDER}/google-cloud-sdk/bin/gsutil"
def get_cached_systems_to_train(recompute=False):
output_path = os.path.join(OUTPUT_FOLDER, "to_train.pickle")
if os.path.exists(output_path) and not recompute:
return pd.read_pickle(output_path)
"""
full:
loaded 1357906 409726 163816 433865
loaded 990260 409726 125818 106411
joined splits 409726
Has splits 311008
unique systems 311008
split
train 309140
test 1036
val 832
Name: count, dtype: int64
Has affinity 36856
Has affinity by splits split
train 36598
test 142
val 116
Name: count, dtype: int64
Total systems before pred 311008
Total systems after pred 311008
Has pred 83487
Has apo 75127
Has both 51506
Has either 107108
columns Index(['system_id', 'entry_pdb_id', 'ligand_binding_affinity',
'entry_release_date', 'system_pocket_UniProt',
'system_num_protein_chains', 'system_num_ligand_chains', 'uniqueness',
'split', 'cluster', 'cluster_for_val_split',
'system_pass_validation_criteria', 'system_pass_statistics_criteria',
'system_proper_num_ligand_chains', 'system_proper_pocket_num_residues',
'system_proper_num_interactions',
'system_proper_ligand_max_molecular_weight',
'system_has_binding_affinity', 'system_has_apo_or_pred', '_bucket_id',
'linked_pred_id', 'linked_apo_id'],
dtype='object')
total systems 311008
"""
systems = pd.read_parquet(PLINDER_ANNOTATIONS,
columns=['system_id', 'entry_pdb_id', 'ligand_binding_affinity',
'entry_release_date', 'system_pocket_UniProt', 'entry_resolution',
'system_num_protein_chains', 'system_num_ligand_chains'])
splits = pd.read_parquet(PLINDER_SPLITS)
linked_pred = pd.read_parquet(PLINDER_LINKED_PRED_MAP)
linked_apo = pd.read_parquet(PLINDER_LINKED_APO_MAP)
print("loaded", len(systems), len(splits), len(linked_pred), len(linked_apo))
# remove duplicated
systems = systems.drop_duplicates(subset=['system_id'])
splits = splits.drop_duplicates(subset=['system_id'])
linked_pred = linked_pred.drop_duplicates(subset=['reference_system_id'])
linked_apo = linked_apo.drop_duplicates(subset=['reference_system_id'])
print("loaded", len(systems), len(splits), len(linked_pred), len(linked_apo))
# join splits
systems = pd.merge(systems, splits, on='system_id', how='inner')
print("joined splits", len(systems))
systems['_bucket_id'] = systems['entry_pdb_id'].str[1:3]
# leave only with train/val/test splits
systems = systems[systems['split'].isin(['train', 'val', 'test'])]
print("Has splits", len(systems))
print("unique systems", systems['system_id'].nunique())
print(systems["split"].value_counts())
print("Has affinity", len(systems[systems['ligand_binding_affinity'].notna()]))
# print has affinity by splits
print("Has affinity by splits", systems[systems['ligand_binding_affinity'].notna()]['split'].value_counts())
print("Total systems before pred", len(systems))
# join linked structures - allow to not have linked structures
systems = pd.merge(systems, linked_pred[['reference_system_id', 'id']],
left_on='system_id', right_on='reference_system_id',
how='left')
print("Total systems after pred", len(systems))
# Rename the 'id' column from linked_pred to 'linked_pred_id'
systems.rename(columns={'id': 'linked_pred_id'}, inplace=True)
# Merge the result with linked_apo on the same condition
systems = pd.merge(systems, linked_apo[['reference_system_id', 'id']],
left_on='system_id', right_on='reference_system_id',
how='left')
# Rename the 'id' column from linked_apo to 'linked_apo_id'
systems.rename(columns={'id': 'linked_apo_id'}, inplace=True)
# Drop the reference_system_id columns that were added during the merge
systems.drop(columns=['reference_system_id_x', 'reference_system_id_y'], inplace=True)
cluster_sizes = systems["cluster"].value_counts()
systems["cluster_size"] = systems["cluster"].map(cluster_sizes)
# print(systems[['system_id', 'cluster', 'cluster_size']])
print("Has pred", systems['linked_pred_id'].notna().sum())
print("Has apo", systems['linked_apo_id'].notna().sum())
print("Has both", (systems['linked_pred_id'].notna() & systems['linked_apo_id'].notna()).sum())
print("Has either", (systems['linked_pred_id'].notna() | systems['linked_apo_id'].notna()).sum())
print("columns", systems.columns)
systems.to_pickle(output_path)
return systems
def create_conformers(smiles, output_path, num_conformers=100, multiplier_samples=1):
target_mol = Chem.MolFromSmiles(smiles)
target_mol = Chem.AddHs(target_mol)
params = AllChem.ETKDGv3()
params.numThreads = 0 # Use all available threads
params.pruneRmsThresh = 0.1 # Pruning threshold for RMSD
conformer_ids = AllChem.EmbedMultipleConfs(target_mol, numConfs=num_conformers * multiplier_samples, params=params)
# Optional: Optimize each conformer using MMFF94 force field
# for conf_id in conformer_ids:
# AllChem.UFFOptimizeMolecule(target_mol, confId=conf_id)
# remove hydrogen atoms
target_mol = Chem.RemoveHs(target_mol)
# Save aligned conformers to a file (optional)
w = Chem.SDWriter(output_path)
for i, conf_id in enumerate(conformer_ids):
if i >= num_conformers:
break
w.write(target_mol, confId=conf_id)
w.close()
def do_robust_chain_object_renumber(chain: Bio.PDB.Chain.Chain, new_chain_id: str) -> Optional[Bio.PDB.Chain.Chain]:
all_residues = [res for res in chain.get_residues()
if "CA" in res and Bio.SeqUtils.seq1(res.get_resname()) not in ("X", "", " ")]
if not all_residues:
return None
res_and_res_id = [(res, res.get_id()[1]) for res in all_residues]
min_res_id = min([i[1] for i in res_and_res_id])
if min_res_id < 1:
print("Negative res id", chain, min_res_id)
factor = -1 * min_res_id + 1
res_and_res_id = [(res, res_id + factor) for res, res_id in res_and_res_id]
res_and_res_id_no_collisions = []
for res, res_id in res_and_res_id[::-1]:
if res_and_res_id_no_collisions and res_and_res_id_no_collisions[-1][1] == res_id:
# there is a collision, usually an insertion residue
res_and_res_id_no_collisions = [(i, j + 1) for i, j in res_and_res_id_no_collisions]
res_and_res_id_no_collisions.append((res, res_id))
first_res_id = min([i[1] for i in res_and_res_id_no_collisions])
factor = 1 - first_res_id # start from 1
new_chain = Bio.PDB.Chain.Chain(new_chain_id)
res_and_res_id_no_collisions.sort(key=lambda x: x[1])
for res, res_id in res_and_res_id_no_collisions:
chain.detach_child(res.id)
res.id = (" ", res_id + factor, " ")
new_chain.add(res)
return new_chain
def robust_renumber_protein(pdb_path: str, output_path: str):
if pdb_path.endswith(".pdb"):
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
pdb_struct = pdb_parser.get_structure("original_pdb", pdb_path)
elif pdb_path.endswith(".cif"):
pdb_struct = Bio.PDB.MMCIFParser().get_structure("original_pdb", pdb_path)
else:
raise ValueError("Unknown file type", pdb_path)
assert len(list(pdb_struct)) == 1, "can't extract if more than one model"
model = next(iter(pdb_struct))
chains = list(model.get_chains())
new_model = Bio.PDB.Model.Model(0)
chain_ids = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
for chain, chain_id in zip(chains, chain_ids):
new_chain = do_robust_chain_object_renumber(chain, chain_id)
if new_chain is None:
continue
new_model.add(new_chain)
new_struct = Bio.PDB.Structure.Structure("renumbered_pdb")
new_struct.add(new_model)
io = Bio.PDB.PDBIO()
io.set_structure(new_struct)
io.save(output_path)
def _get_extra(extra_to_save: int, res_before: List[int], res_after: List[int]) -> set:
take_from_before = random.randint(0, extra_to_save)
take_from_after = extra_to_save - take_from_before
if take_from_before > len(res_before):
take_from_after = extra_to_save - len(res_before)
take_from_before = len(res_before)
if take_from_after > len(res_after):
take_from_before = extra_to_save - len(res_after)
take_from_after = len(res_after)
extra_to_add = set()
if take_from_before > 0:
extra_to_add.update(res_before[-take_from_before:])
extra_to_add.update(res_after[:take_from_after])
return extra_to_add
def crop_protein_cont(gt_pdb_path: str, ligand_pos: np.ndarray, output_path: str, max_length: int,
distance_threshold: float):
protein = Chem.MolFromPDBFile(gt_pdb_path, sanitize=False)
ligand_size = ligand_pos.shape[0]
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
gt_model = next(iter(pdb_parser.get_structure("gt_pdb", gt_pdb_path)))
all_res_ids_by_chain = {chain.id: sorted([res.id[1] for res in chain.get_residues() if "CA" in res])
for chain in gt_model.get_chains()}
protein_conf = protein.GetConformer()
protein_pos = protein_conf.GetPositions()
protein_atoms = list(protein.GetAtoms())
assert len(protein_pos) == len(protein_atoms), f"Positions and atoms mismatch in {gt_pdb_path}"
inter_dists = ligand_pos[:, np.newaxis, :] - protein_pos[np.newaxis, :, :]
inter_dists = np.sqrt((inter_dists ** 2).sum(-1))
min_inter_dist_per_protein_atom = inter_dists.min(axis=0)
res_to_save_count = max_length - ligand_size
used_protein_idx = np.where(min_inter_dist_per_protein_atom < distance_threshold)[0]
pocket_residues_by_chain = {}
for idx in used_protein_idx:
res = protein_atoms[idx].GetPDBResidueInfo()
if res.GetIsHeteroAtom():
continue
if res.GetChainId() not in pocket_residues_by_chain:
pocket_residues_by_chain[res.GetChainId()] = set()
# get residue chain
pocket_residues_by_chain[res.GetChainId()].add(res.GetResidueNumber())
if not pocket_residues_by_chain:
print("No pocket residues found")
return -1
# print("pocket_residues_by_chain", pocket_residues_by_chain)
complete_pocket = []
extended_pocket_per_chain = {}
for chain_id, pocket_residues in pocket_residues_by_chain.items():
max_pocket_res = max(pocket_residues)
min_pocket_res = min(pocket_residues)
extended_pocket_per_chain[chain_id] = {res_id for res_id in all_res_ids_by_chain[chain_id]
if min_pocket_res <= res_id <= max_pocket_res}
for res_id in extended_pocket_per_chain[chain_id]:
complete_pocket.append((chain_id, res_id))
# print("extended_pocket_per_chain", pocket_residues_by_chain)
if len(complete_pocket) > res_to_save_count:
total_res_ids = sum([len(res_ids) for res_ids in all_res_ids_by_chain.values()])
total_pocket_res = sum([len(res_ids) for res_ids in pocket_residues_by_chain.values()])
print(f"Too many residues all: {total_res_ids} pocket:{total_pocket_res} {len(complete_pocket)} "
f"(ligand size: {ligand_size})")
return -1
extra_to_save = res_to_save_count - len(complete_pocket)
# divide extra_to_save between chains
for chain_id, pocket_residues in extended_pocket_per_chain.items():
extra_to_save_per_chain = extra_to_save // len(extended_pocket_per_chain)
res_before = [res_id for res_id in all_res_ids_by_chain[chain_id] if res_id < min(pocket_residues)]
res_after = [res_id for res_id in all_res_ids_by_chain[chain_id] if res_id > max(pocket_residues)]
extra_to_add = _get_extra(extra_to_save_per_chain, res_before, res_after)
for res_id in extra_to_add:
complete_pocket.append((chain_id, res_id))
total_res_ids = sum([len(res_ids) for res_ids in all_res_ids_by_chain.values()])
total_pocket_res = sum([len(res_ids) for res_ids in pocket_residues_by_chain.values()])
total_extended_res = sum([len(res_ids) for res_ids in extended_pocket_per_chain.values()])
print(f"Found valid pocket all: {total_res_ids} pocket:{total_pocket_res} {total_extended_res} "
f"{len(complete_pocket)} (ligand size: {ligand_size}) extra: {extra_to_save}")
# print("all_res_ids_by_chain", all_res_ids_by_chain)
# print("complete_pocket", sorted(complete_pocket))
res_to_remove = []
for res in gt_model.get_residues():
if (res.parent.id, res.id[1]) not in complete_pocket or res.id[0].strip() != "" or res.id[2].strip() != "":
res_to_remove.append(res)
for res in res_to_remove:
gt_model[res.parent.id].detach_child(res.id)
io = Bio.PDB.PDBIO()
io.set_structure(gt_model)
io.save(output_path)
return len(complete_pocket)
def crop_protein_simple(gt_pdb_path: str, ligand_pos: np.ndarray, output_path: str, max_length: int):
protein = Chem.MolFromPDBFile(gt_pdb_path, sanitize=False)
ligand_size = ligand_pos.shape[0]
res_to_save_count = max_length - ligand_size
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
gt_model = next(iter(pdb_parser.get_structure("gt_pdb", gt_pdb_path)))
protein_conf = protein.GetConformer()
protein_pos = protein_conf.GetPositions()
protein_atoms = list(protein.GetAtoms())
assert len(protein_pos) == len(protein_atoms), f"Positions and atoms mismatch in {gt_pdb_path}"
inter_dists = ligand_pos[:, np.newaxis, :] - protein_pos[np.newaxis, :, :]
inter_dists = np.sqrt((inter_dists ** 2).sum(-1))
min_inter_dist_per_protein_atom = inter_dists.min(axis=0)
protein_idx_by_dist = np.argsort(min_inter_dist_per_protein_atom)
pocket_residues_by_chain = {}
total_found = 0
for idx in protein_idx_by_dist:
res = protein_atoms[idx].GetPDBResidueInfo()
if res.GetIsHeteroAtom():
continue
if res.GetChainId() not in pocket_residues_by_chain:
pocket_residues_by_chain[res.GetChainId()] = set()
# get residue chain
pocket_residues_by_chain[res.GetChainId()].add(res.GetResidueNumber())
total_found = sum([len(res_ids) for res_ids in pocket_residues_by_chain.values()])
if total_found >= res_to_save_count:
break
print("saved with simple", total_found)
if not pocket_residues_by_chain:
print("No pocket residues found")
return -1
res_to_remove = []
for res in gt_model.get_residues():
if res.id[1] not in pocket_residues_by_chain.get(res.parent.id, set()) \
or res.id[0].strip() != "" or res.id[2].strip() != "":
res_to_remove.append(res)
for res in res_to_remove:
gt_model[res.parent.id].detach_child(res.id)
io = Bio.PDB.PDBIO()
io.set_structure(gt_model)
io.save(output_path)
return total_found
def cif_to_pdb(cif_path: str, pdb_path: str):
protein = Bio.PDB.MMCIFParser().get_structure("s_cif", cif_path)
io = Bio.PDB.PDBIO()
io.set_structure(protein)
io.save(pdb_path)
def get_chain_object_to_seq(chain: Bio.PDB.Chain.Chain) -> str:
res_id_to_res = {res.get_id()[1]: res for res in chain.get_residues() if "CA" in res}
if len(res_id_to_res) == 0:
print("skipping empty chain", chain.get_id())
return ""
seq = ""
for i in range(1, max(res_id_to_res) + 1):
if i in res_id_to_res:
seq += Bio.SeqUtils.seq1(res_id_to_res[i].get_resname())
else:
seq += "X"
return seq
def get_sequence_from_pdb(pdb_path: str) -> Tuple[str, List[int]]:
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
pdb_struct = pdb_parser.get_structure("original_pdb", pdb_path)
# chain_to_seq = {chain.id: get_chain_object_to_seq(chain) for chain in pdb_struct.get_chains()}
all_chain_seqs = [ get_chain_object_to_seq(chain) for chain in pdb_struct.get_chains()]
chain_lengths = [len(seq) for seq in all_chain_seqs]
return ("X" * 20).join(all_chain_seqs), chain_lengths
from Bio import PDB
from Bio import pairwise2
def extract_sequence(chain):
seq = ''
residues = []
for res in chain.get_residues():
seq_res = Bio.SeqUtils.seq1(res.get_resname())
if seq_res in ('X', "", " "):
continue
seq += seq_res
residues.append(res)
return seq, residues
def map_residues(alignment, residues_gt, residues_pred):
idx_gt = 0
idx_pred = 0
mapping = []
for i in range(len(alignment.seqA)):
aa_gt = alignment.seqA[i]
aa_pred = alignment.seqB[i]
res_gt = None
res_pred = None
if aa_gt != '-':
res_gt = residues_gt[idx_gt]
idx_gt += 1
if aa_pred != '-':
res_pred = residues_pred[idx_pred]
idx_pred +=1
if res_gt and res_pred:
mapping.append((res_gt, res_pred))
return mapping
class ResidueSelect(PDB.Select):
def __init__(self, residues_to_select):
self.residues_to_select = set(residues_to_select)
def accept_residue(self, residue):
return residue in self.residues_to_select
def align_gt_and_input(gt_pdb_path, input_pdb_path, output_gt_path, output_input_path):
parser = PDB.PDBParser(QUIET=True)
gt_structure = parser.get_structure('gt', gt_pdb_path)
pred_structure = parser.get_structure('pred', input_pdb_path)
matched_residues_gt = []
matched_residues_pred = []
used_chain_pred = []
total_mapping_size = 0
for chain_gt in gt_structure.get_chains():
seq_gt, residues_gt = extract_sequence(chain_gt)
best_alignment = None
best_chain_pred = None
best_score = -1
best_residues_pred = None
# Find the best matching chain in pred
for chain_pred in pred_structure.get_chains():
print("checking", chain_pred.get_id(), chain_gt.get_id())
if chain_pred in used_chain_pred:
continue
seq_pred, residues_pred = extract_sequence(chain_pred)
print(seq_gt)
print(seq_pred)
alignments = pairwise2.align.globalxx(seq_gt, seq_pred, one_alignment_only=True)
if not alignments:
continue
print("checking2", chain_pred.get_id(), chain_gt.get_id())
alignment = alignments[0]
score = alignment.score
if score > best_score:
best_score = score
best_alignment = alignment
best_chain_pred = chain_pred
best_residues_pred = residues_pred
if best_alignment:
mapping = map_residues(best_alignment, residues_gt, best_residues_pred)
total_mapping_size += len(mapping)
used_chain_pred.append(best_chain_pred)
for res_gt, res_pred in mapping:
matched_residues_gt.append(res_gt)
matched_residues_pred.append(res_pred)
else:
print(f"No matching chain found for chain {chain_gt.get_id()}")
print(f"Total mapping size: {total_mapping_size}")
# Write new PDB files with only matched residues
io = PDB.PDBIO()
io.set_structure(gt_structure)
io.save(output_gt_path, ResidueSelect(matched_residues_gt))
io.set_structure(pred_structure)
io.save(output_input_path, ResidueSelect(matched_residues_pred))
def validate_matching_input_gt(gt_pdb_path, input_pdb_path):
gt_residues = [res for res in PDB.PDBParser().get_structure('gt', gt_pdb_path).get_residues()]
input_residues = [res for res in PDB.PDBParser().get_structure('input', input_pdb_path).get_residues()]
if len(gt_residues) != len(input_residues):
print(f"Residue count mismatch: {len(gt_residues)} vs {len(input_residues)}")
return -1
for res_gt, res_input in zip(gt_residues, input_residues):
if res_gt.get_resname() != res_input.get_resname():
print(f"Residue name mismatch: {res_gt.get_resname()} vs {res_input.get_resname()}")
return -1
return len(input_residues)
def prepare_system(row, system_folder, output_models_folder, output_jsons_folder, should_overwrite=False):
output_json_path = os.path.join(output_jsons_folder, f"{row['system_id']}.json")
if os.path.exists(output_json_path) and not should_overwrite:
return "Already exists"
plinder_gt_pdb_path = os.path.join(system_folder, f"receptor.pdb")
plinder_gt_ligand_paths = []
plinder_gt_ligands_folder = os.path.join(system_folder, "ligand_files")
gt_output_path = os.path.join(output_models_folder, f"{row['system_id']}_gt.pdb")
gt_output_relative_path = "plinder_models/" + f"{row['system_id']}_gt.pdb"
tmp_input_path = os.path.join(output_models_folder, f"tmp_{row['system_id']}_input.pdb")
protein_input_path = os.path.join(output_models_folder, f"{row['system_id']}_input.pdb")
protein_input_relative_path = "plinder_models/" + f"{row['system_id']}_input.pdb"
print("Copying ground truth files")
if not os.path.exists(plinder_gt_pdb_path):
print("no receptor", plinder_gt_pdb_path)
return "No receptor"
tmp_gt_pdb_path = os.path.join(output_models_folder, f"tmp_{row['system_id']}_gt.pdb")
robust_renumber_protein(plinder_gt_pdb_path, tmp_gt_pdb_path)
ligand_pos_list = []
for ligand_file in os.listdir(plinder_gt_ligands_folder):
if not ligand_file.endswith(".sdf"):
continue
plinder_gt_ligand_paths.append(os.path.join(plinder_gt_ligands_folder, ligand_file))
loaded_ligand = Chem.MolFromMolFile(os.path.join(plinder_gt_ligands_folder, ligand_file))
ligand_pos_list.append(loaded_ligand.GetConformer().GetPositions())
if loaded_ligand is None:
print("failed to load", plinder_gt_ligand_paths[-1])
return "Failed to load ligand"
# Crop ground truth protein, also removes insertion codes
ligand_pos = np.concatenate(ligand_pos_list, axis=0)
res_count_in_protein = crop_protein_cont(tmp_gt_pdb_path, ligand_pos, gt_output_path, max_length=350,
distance_threshold=5)
if res_count_in_protein == -1:
print("Failed to crop protein continously, using simple crop")
crop_protein_simple(tmp_gt_pdb_path, ligand_pos, gt_output_path, max_length=350)
os.remove(tmp_gt_pdb_path)
# Generate input protein structure
input_protein_source = None
if pd.notna(row["linked_apo_id"]):
apo_pdb_path = os.path.join(PLINDER_LINKED_APO_STRUCTURES, f"{row['linked_apo_id']}.cif")
try:
robust_renumber_protein(apo_pdb_path, tmp_input_path)
input_protein_source = "apo"
print("Using input apo", row['linked_apo_id'])
except Exception as e:
print("Problem with apo", e, row["linked_apo_id"], apo_pdb_path)
if not os.path.exists(tmp_input_path) and pd.notna(row["linked_pred_id"]):
pred_pdb_path = os.path.join(PLINDER_LINKED_PRED_STRUCTURES, f"{row['linked_pred_id']}.cif")
try:
# cif_to_pdb(pred_pdb_path, tmp_input_path)
robust_renumber_protein(pred_pdb_path, tmp_input_path)
input_protein_source = "pred"
print("Using input pred", row['linked_pred_id'])
except:
print("Problem with pred")
if not os.path.exists(tmp_input_path):
print("No linked structure found, running ESM")
url = "https://api.esmatlas.com/foldSequence/v1/pdb/"
sequence, chain_lengths = get_sequence_from_pdb(gt_output_path)
if len(sequence) <= 400:
try:
response = requests.post(url, data=sequence)
response.raise_for_status()
pdb_text = response.text
with open(tmp_input_path, "w") as f:
f.write(pdb_text)
# divide to chains
if len(chain_lengths) > 1:
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
pdb_struct = pdb_parser.get_structure("original_pdb", tmp_input_path)
pdb_model = next(iter(pdb_struct))
chain_ids = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"[:len(chain_lengths)]
start_ind = 1
esm_chain = next(pdb_model.get_chains())
new_model = Bio.PDB.Model.Model(0)
for chain_length, chain_id in zip(chain_lengths, chain_ids):
end_ind = start_ind + chain_length
new_chain = Bio.PDB.Chain.Chain(chain_id)
for res in esm_chain.get_residues():
if start_ind <= res.id[1] <= end_ind:
new_chain.add(res)
new_model.add(new_chain)
start_ind = end_ind + 20 # 20 is the gap in esm
io = Bio.PDB.PDBIO()
io.set_structure(new_model)
io.save(tmp_input_path)
input_protein_source = "esm"
print("Using input ESM")
except requests.exceptions.RequestException as e:
print(f"An error occurred in ESM: {e}")
# return "No linked structure found"
else:
print("Sequence too long for ESM")
if not os.path.exists(tmp_input_path):
print("Using input GT")
shutil.copyfile(gt_output_path, tmp_input_path)
input_protein_source = "gt"
align_gt_and_input(gt_output_path, tmp_input_path, gt_output_path, protein_input_path)
protein_size = validate_matching_input_gt(gt_output_path, protein_input_path)
assert protein_size > -1, "Failed to validate matching input and gt"
os.remove(tmp_input_path)
rel_gt_lig_paths = []
rel_ref_lig_paths = []
input_smiles = []
for i, ligand_path in enumerate(sorted(plinder_gt_ligand_paths)):
gt_ligand_output_path = os.path.join(output_models_folder, f"{row['system_id']}_ligand_gt_{i}.sdf")
# rel_gt_lig_paths.append(f"plinder_models/{row['system_id']}_ref_ligand_{i}.sdf")
rel_gt_lig_paths.append(f"plinder_models/{row['system_id']}_ligand_gt_{i}.sdf")
shutil.copyfile(ligand_path, gt_ligand_output_path)
loaded_ligand = Chem.MolFromMolFile(gt_ligand_output_path)
input_smiles.append(Chem.MolToSmiles(loaded_ligand))
ref_ligand_output_path = os.path.join(output_models_folder, f"{row['system_id']}_ligand_ref_{i}.sdf")
rel_ref_lig_paths.append(f"plinder_models/{row['system_id']}_ligand_ref_{i}.sdf")
create_conformers(input_smiles[-1], ref_ligand_output_path, num_conformers=1)
# check if file is empty
if os.path.getsize(ref_ligand_output_path) == 0:
print("Empty ref ligand, copying from gt", ref_ligand_output_path)
shutil.copyfile(gt_ligand_output_path, ref_ligand_output_path)
affinity = row["ligand_binding_affinity"]
if not pd.notna(affinity):
affinity = None
json_data = {
"input_structure": protein_input_relative_path,
"gt_structure": gt_output_relative_path,
"gt_sdf_list": rel_gt_lig_paths,
"input_smiles_list": input_smiles,
"resolution": row.fillna(99)["entry_resolution"],
"release_year": row["entry_release_date"],
"affinity": affinity,
"protein_seq_len": protein_size,
"uniprot": row["system_pocket_UniProt"],
"ligand_num_atoms": ligand_pos.shape[0],
"cluster": row["cluster"],
"cluster_size": row["cluster_size"],
"input_protein_source": input_protein_source,
"ref_sdf_list": rel_ref_lig_paths,
"pdb_id": row["system_id"],
}
open(output_json_path, "w").write(json.dumps(json_data, indent=4))
return "success"
# use linked structures
# input_structure_to_use = None
# apo_linked_structure = os.path.join(linked_structures_folder, "apo", system_id)
# pred_linked_structure = os.path.join(linked_structures_folder, "pred", system_id)
# if os.path.exists(apo_linked_structure):
# for folder in os.listdir(apo_linked_structure):
# if not os.path.isdir(os.path.join(pred_linked_structure, folder)):
# continue
# for filename in os.listdir(os.path.join(apo_linked_structure, folder)):
# if filename.endswith(".cif"):
# input_structure_to_use = os.path.join(apo_linked_structure, folder, filename)
# break
# if input_structure_to_use:
# break
# print(system_id, "found apo", input_structure_to_use)
# elif os.path.exists(pred_linked_structure):
# for folder in os.listdir(pred_linked_structure):
# if not os.path.isdir(os.path.join(pred_linked_structure, folder)):
# continue
# for filename in os.listdir(os.path.join(pred_linked_structure, folder)):
# if filename.endswith(".cif"):
# input_structure_to_use = os.path.join(pred_linked_structure, folder, filename)
# break
# if input_structure_to_use:
# break
# print(system_id, "found pred", input_structure_to_use)
# else:
# print(system_id, "no linked structure found")
# return "No linked structure found"
def main(prefix_bucket_id: str = "*"):
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
systems = get_cached_systems_to_train()
print("total systems", len(systems))
print("clusters", systems["cluster"].value_counts())
# systems = systems[systems["system_num_protein_chains"] > 1]
# return
print("splits", systems["split"].value_counts())
val_or_test = systems[(systems["split"] == "val") | (systems["split"] == "test")]
print("validation or test", len(val_or_test))
output_models_folder = os.path.join(OUTPUT_FOLDER, "plinder_models")
output_train_jsons_folder = os.path.join(OUTPUT_FOLDER, "plinder_jsons_train")
output_val_jsons_folder = os.path.join(OUTPUT_FOLDER, "plinder_jsons_val")
output_test_jsons_folder = os.path.join(OUTPUT_FOLDER, "plinder_jsons_test")
output_info = os.path.join(OUTPUT_FOLDER, "plinder_generation_info.csv")
if prefix_bucket_id != "*":
output_info = os.path.join(OUTPUT_FOLDER, f"plinder_generation_info_{prefix_bucket_id}.csv")
os.makedirs(output_models_folder, exist_ok=True)
os.makedirs(output_train_jsons_folder, exist_ok=True)
os.makedirs(output_val_jsons_folder, exist_ok=True)
os.makedirs(output_test_jsons_folder, exist_ok=True)
split_to_folder = {
"train": output_train_jsons_folder,
"val": output_val_jsons_folder,
"test": output_test_jsons_folder
}
output_info_file = open(output_info, "a+")
for bucket_id, bucket_systems in systems.groupby('_bucket_id', sort=True):
if prefix_bucket_id != "*" and not str(bucket_id).startswith(prefix_bucket_id):
continue
# if bucket_id != "z2":
# continue
# systems_folder = "{BASE_FOLDER}/processed/tmp_z2/systems"
print("Starting bucket", bucket_id, len(bucket_systems))
print(len(bucket_systems), bucket_systems["system_num_ligand_chains"].value_counts())
tmp_output_models_folder = os.path.join(OUTPUT_FOLDER, f"tmp_{bucket_id}")
os.makedirs(tmp_output_models_folder, exist_ok=True)
os.system(f'{GSUTIL_PATH} -m cp -r "gs://plinder/2024-06/v2/systems/{bucket_id}.zip" {tmp_output_models_folder}')
systems_folder = os.path.join(tmp_output_models_folder, "systems")
os.system(f'unzip -o {os.path.join(tmp_output_models_folder, f"{bucket_id}.zip")} -d {systems_folder}')
for i, row in bucket_systems.iterrows():
# if not str(row['system_id']).startswith("4z22__1__1.A__1.C"):
# continue
print("doing", row['system_id'], row["system_num_protein_chains"], row["system_num_ligand_chains"])
system_folder = os.path.join(systems_folder, row['system_id'])
try:
success = prepare_system(row, system_folder, output_models_folder, split_to_folder[row["split"]])
print("done", row['system_id'], success)
output_info_file.write(f"{bucket_id},{row['system_id']},{success}\n")
except Exception as e:
print("Failed", row['system_id'], e)
output_info_file.write(f"{bucket_id},{row['system_id']},Failed\n")
output_info_file.flush()
shutil.rmtree(tmp_output_models_folder)
if __name__ == '__main__':
prefix_bucket_id = "*"
if len(sys.argv) > 1:
prefix_bucket_id = sys.argv[1]
main(prefix_bucket_id) |