File size: 2,702 Bytes
7949e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import streamlit as st
import requests
import os

# Get API token from environment variable
API_TOKEN = os.getenv("HF_API_TOKEN")  # Ensure you set this in your environment
MODEL_ID = "bigcode/starcoder"
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}

def translate_code(code_snippet, source_lang, target_lang):
    """Translate code using Hugging Face API with improved prompt."""
    prompt = f"""You are a code translation AI. Your task is to translate {source_lang} code into {target_lang} accurately.
    
    Example Translation:
    Python:
    ```python
    name = input("Enter your name: ")
    print("Hello, " + name)
    ```
    
    Java:
    ```java
    import java.util.Scanner;
    public class Main {{
        public static void main(String[] args) {{
            Scanner scanner = new Scanner(System.in);
            System.out.print("Enter your name: ");
            String name = scanner.nextLine();
            System.out.println("Hello, " + name);
        }}
    }}
    ```

    Now translate the following {source_lang} code to {target_lang}:
    
    {code_snippet}

    Translated {target_lang} Code:
    """

    response = requests.post(API_URL, headers=HEADERS, json={
        "inputs": prompt,
        "parameters": {
            "max_new_tokens": 200,
            "temperature": 0.2,
            "top_k": 50,
            "stop": ["\n\n", "#", "//", "'''"]
        }
    })

    if response.status_code == 200:
        generated_text = response.json()[0]["generated_text"]

        # Extract only the translated code
        translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
        
        # Clean output by removing unnecessary text
        translated_code = translated_code.replace("```", "").strip()
        return translated_code
    else:
        return f"Error: {response.status_code}, {response.text}"

# Streamlit UI
st.title("🔄 Code Translator using StarCoder")
st.write("Translate code between different programming languages using AI.")

languages = ["Python", "Java", "C++", "C"]

source_lang = st.selectbox("Select source language", languages)
target_lang = st.selectbox("Select target language", languages)
code_input = st.text_area("Enter your code here:", height=200)

if st.button("Translate"):
    if code_input.strip():
        with st.spinner("Translating..."):
            translated_code = translate_code(code_input, source_lang, target_lang)
            st.subheader("Translated Code:")
            st.code(translated_code, language=target_lang.lower())
    else:
        st.warning("⚠️ Please enter some code before translating.")