Spaces:
Running
Running
File size: 5,486 Bytes
7949e50 6609537 a26ed8f 290e3e6 0a74433 290e3e6 64bf3aa 290e3e6 8e781a2 a26ed8f 51a2adc 8e781a2 01e0394 8e781a2 a26ed8f e3e93d3 a26ed8f 6609537 a26ed8f 1b91a5d a26ed8f c8b2e06 a26ed8f 0db7d18 8e781a2 1b91a5d a26ed8f 290e3e6 7949e50 6609537 e3e93d3 6609537 290e3e6 6609537 3e86e45 a26ed8f e3e93d3 c8b2e06 e3e93d3 265be45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import streamlit as st
import sys
import io
# CSS for background image and custom styling
tabs_css = """
<style>
/* Full-screen background image */
.stApp {
background: url('https://huggingface.co/spaces/MLDeveloper/code_compiler/resolve/main/images/blank.png') no-repeat center center fixed;
background-size: cover;
}
/* Remove the white background box in header */
.stHeader, .stSubheader {
background-color: transparent !important;
}
/* Remove any background box around the text */
.stMarkdown, .stTitle, .stText, .stList, .stSubheader {
background-color: transparent;
color: black !important;
font-weight: bold;
}
/* Custom styling for tabs */
.stTabs [data-baseweb="tab-list"] {
background-color: white;
border-radius: 20px;
padding: 5px;
box-shadow: 2px 2px 10px rgba(0, 0, 0, 0.1);
}
.stTabs [data-baseweb="tab"] {
color: #B71C1C;
font-weight: bold;
border-radius: 20px;
padding: 10px 20px;
}
.stTabs [aria-selected="true"] {
background-color: #FAE5D3 !important;
color: #B71C1C !important;
font-weight: bold;
}
/* Add some padding and styling to text boxes */
.stTextInput, .stTextArea {
font-size: 16px;
padding: 10px;
border-radius: 8px;
border: 1px solid #ccc;
}
</style>
"""
st.markdown(tabs_css, unsafe_allow_html=True)
def execute_code(code, user_input=""):
"""Execute the given code with simulated input and return the output."""
old_stdout = sys.stdout # Backup original stdout
redirected_output = io.StringIO() # Create a new string buffer
sys.stdout = redirected_output # Redirect stdout to buffer
input_values = user_input.strip().split("\n") # Split user inputs by line
input_counter = 0
def mock_input(prompt=""):
nonlocal input_counter
if input_counter < len(input_values):
value = input_values[input_counter]
input_counter += 1
return value
else:
raise ValueError("Not enough inputs provided.")
try:
exec(code, {"input": mock_input}) # Execute the user's code with mock input
output = redirected_output.getvalue() # Get the output from buffer
except Exception as e:
output = f"Error: {str(e)}" # Capture and display any errors
finally:
sys.stdout = old_stdout # Restore original stdout
return output.strip() # Return cleaned output
# Streamlit UI
st.title("💻 Python Compiler 🐍")
st.write("Write your Python code and get the correct output!")
code_input = st.text_area("Enter your Python code:", height=200)
user_input = st.text_area("Enter input values (one per line):", height=100)
if st.button("Run Code"):
if code_input.strip():
with st.spinner("Executing..."):
output = execute_code(code_input, user_input)
st.subheader("Output:")
st.code(output, language="plaintext")
else:
st.warning("⚠️ Please enter some Python code before running.")
# V1 without gemini api
# import streamlit as st
# import requests
# import os # Import os to access environment variables
# # Get API token from environment variable
# API_TOKEN = os.getenv("HF_API_TOKEN")
# # Change MODEL_ID to a better model
# MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended)
# # MODEL_ID = "bigcode/starcoder2-15b" # StarCoder2
# # MODEL_ID = "bigcode/starcoder"
# API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
# HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
# def translate_code(code_snippet, source_lang, target_lang):
# """Translate code using Hugging Face API securely."""
# prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
# response = requests.post(API_URL, headers=HEADERS, json={
# "inputs": prompt,
# "parameters": {
# "max_new_tokens": 150,
# "temperature": 0.2,
# "top_k": 50
# # "stop": ["\n\n", "#", "//", "'''"]
# }
# })
# if response.status_code == 200:
# generated_text = response.json()[0]["generated_text"]
# translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
# return translated_code
# else:
# return f"Error: {response.status_code}, {response.text}"
# # Streamlit UI
# st.title("🔄 Code Translator using StarCoder")
# st.write("Translate code between different programming languages using AI.")
# languages = ["Python", "Java", "C++", "C"]
# source_lang = st.selectbox("Select source language", languages)
# target_lang = st.selectbox("Select target language", languages)
# code_input = st.text_area("Enter your code here:", height=200)
# if st.button("Translate"):
# if code_input.strip():
# with st.spinner("Translating..."):
# translated_code = translate_code(code_input, source_lang, target_lang)
# st.subheader("Translated Code:")
# st.code(translated_code, language=target_lang.lower())
# else:
# st.warning("⚠️ Please enter some code before translating. ") |