Spaces:
Running
Running
File size: 7,979 Bytes
74de087 6ba6b88 74de087 14ffea8 74de087 14ffea8 74de087 6ba6b88 74de087 b6c2f72 1f38341 b6c2f72 d45e25b 74de087 14ffea8 d45e25b 74de087 df1ec48 14ffea8 df1ec48 25b3cb1 12bd46e 14ffea8 74de087 14ffea8 74de087 6ba6b88 14ffea8 74de087 14ffea8 25b3cb1 14ffea8 25b3cb1 14ffea8 9dcaccd 14ffea8 25b3cb1 14ffea8 a77422a 14ffea8 9dcaccd 14ffea8 4c61d3e cc76db0 14ffea8 12bd46e aab2e6f 74de087 14ffea8 74de087 14ffea8 74de087 14ffea8 74de087 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import cv2
import numpy as np
import json
import gradio as gr
import os
import xml.etree.ElementTree as ET
# ---------------- Helper functions ----------------
def get_rotated_rect_corners(x, y, w, h, rotation_deg):
rot_rad = np.deg2rad(rotation_deg)
cos_r, sin_r = np.cos(rot_rad), np.sin(rot_rad)
R = np.array([[cos_r, -sin_r], [sin_r, cos_r]])
cx, cy = x + w/2, y + h/2
local_corners = np.array([[-w/2,-h/2],[w/2,-h/2],[w/2,h/2],[-w/2,h/2]])
rotated_corners = np.dot(local_corners, R.T)
return (rotated_corners + np.array([cx,cy])).astype(np.float32)
def preprocess_gray_clahe(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
return clahe.apply(gray)
def detect_and_match(img1_gray, img2_gray, method="SIFT", ratio_thresh=0.78):
if method=="SIFT":
detector=cv2.SIFT_create(nfeatures=5000); matcher=cv2.BFMatcher(cv2.NORM_L2)
elif method=="ORB":
detector=cv2.ORB_create(5000); matcher=cv2.BFMatcher(cv2.NORM_HAMMING)
elif method=="BRISK":
detector=cv2.BRISK_create(); matcher=cv2.BFMatcher(cv2.NORM_HAMMING)
elif method=="KAZE":
detector=cv2.KAZE_create(); matcher=cv2.BFMatcher(cv2.NORM_L2)
elif method=="AKAZE":
detector=cv2.AKAZE_create(); matcher=cv2.BFMatcher(cv2.NORM_HAMMING)
else:
return None,None,[]
kp1, des1 = detector.detectAndCompute(img1_gray,None)
kp2, des2 = detector.detectAndCompute(img2_gray,None)
if des1 is None or des2 is None:
return None,None,[]
raw_matches = matcher.knnMatch(des1,des2,k=2)
good = [m for m,n in raw_matches if m.distance < ratio_thresh*n.distance]
return kp1, kp2, good
def parse_xml_points(xml_file):
tree = ET.parse(xml_file)
root = tree.getroot()
transform = root.find('.//transform')
points = {}
for pt in transform.findall('.//point'):
pt_type = pt.attrib['type']
x = float(pt.attrib['x'])
y = float(pt.attrib['y'])
points[pt_type] = (x, y)
return points
# ---------------- Fit-to-Box Helper ----------------
def fit_to_box(img, target_h=600, target_w=600):
h, w = img.shape[:2]
scale = min(target_w/w, target_h/h) # preserve aspect ratio
new_w, new_h = int(w*scale), int(h*scale)
resized = cv2.resize(img, (new_w, new_h))
# symmetric padding
top = (target_h - new_h) // 2
bottom = target_h - new_h - top
left = (target_w - new_w) // 2
right = target_w - new_w - left
canvas = np.ones((target_h, target_w, 3), dtype=np.uint8) * 255
canvas[top:top+new_h, left:left+new_w] = resized
return canvas
# ---------------- Add Heading on Top ----------------
def add_heading(img, text):
h, w = img.shape[:2]
band_h = 40
canvas = np.ones((h+band_h, w, 3), dtype=np.uint8) * 255
canvas[band_h:] = img
cv2.putText(canvas, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,0), 2, cv2.LINE_AA)
return canvas
# ---------------- Placeholder if matching fails ----------------
def get_placeholder(method):
canvas = np.ones((600, 1800, 3), dtype=np.uint8) * 255
cv2.putText(canvas, f"{method}: Not enough feature matching", (50, 300),
cv2.FONT_HERSHEY_SIMPLEX, 2, (0,0,255), 3, cv2.LINE_AA)
return canvas
# ---------------- Main Function ----------------
def homography_all_detectors(flat_file, persp_file, json_file, xml_file):
flat_img = cv2.imread(flat_file)
persp_img = cv2.imread(persp_file)
mockup = json.load(open(json_file.name))
roi_data = mockup["printAreas"][0]["position"]
roi_x, roi_y = roi_data["x"], roi_data["y"]
roi_w, roi_h = mockup["printAreas"][0]["width"], mockup["printAreas"][0]["height"]
roi_rot_deg = mockup["printAreas"][0]["rotation"]
flat_gray = preprocess_gray_clahe(flat_img)
persp_gray = preprocess_gray_clahe(persp_img)
xml_points = parse_xml_points(xml_file.name)
methods = ["SIFT","ORB","BRISK","KAZE","AKAZE"]
gallery_paths = []
download_files = []
for method in methods:
kp1,kp2,good_matches = detect_and_match(flat_gray,persp_gray,method)
if kp1 is None or kp2 is None or len(good_matches)<4:
placeholder = get_placeholder(method)
fname = f"{method.lower()}_placeholder.png"
cv2.imwrite(fname, placeholder)
gallery_paths.append(fname)
download_files.append(fname)
continue
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1,1,2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1,1,2)
H,_ = cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,5.0)
if H is None:
placeholder = get_placeholder(method)
fname = f"{method.lower()}_placeholder.png"
cv2.imwrite(fname, placeholder)
gallery_paths.append(fname)
download_files.append(fname)
continue
# 1. Flat image with ROI (from JSON)
flat_with_roi = flat_img.copy()
roi_corners_flat = get_rotated_rect_corners(roi_x,roi_y,roi_w,roi_h,roi_rot_deg)
cv2.polylines(flat_with_roi,[roi_corners_flat.astype(int)],True,(0,255,0),2)
for px,py in roi_corners_flat:
cv2.circle(flat_with_roi,(int(px),int(py)),5,(255,0,0),-1)
# 2. Perspective with Homography ROI
roi_corners_persp = cv2.perspectiveTransform(roi_corners_flat.reshape(-1,1,2),H).reshape(-1,2)
persp_roi = persp_img.copy()
cv2.polylines(persp_roi,[roi_corners_persp.astype(int)],True,(0,255,0),5)
for px,py in roi_corners_persp:
cv2.circle(persp_roi,(int(px),int(py)),5,(255,0,0),5)
# 3. Perspective with GT ROI (from XML)
xml_gt_img = persp_img.copy()
ordered_pts = ['TopLeft', 'TopRight', 'BottomRight', 'BottomLeft']
xml_polygon = [xml_points[pt] for pt in ordered_pts]
pts = np.array(xml_polygon, np.int32).reshape((-1,1,2))
cv2.polylines(xml_gt_img,[pts],isClosed=True,color=(255,0,0),thickness=5)
# Convert to RGB + resize + add headings
flat_rgb = add_heading(fit_to_box(cv2.cvtColor(flat_with_roi,cv2.COLOR_BGR2RGB),600,600), "Flat Image with ROI")
roi_rgb = add_heading(fit_to_box(cv2.cvtColor(persp_roi,cv2.COLOR_BGR2RGB),600,600), "Perspective Homography ROI")
xml_rgb = add_heading(fit_to_box(cv2.cvtColor(xml_gt_img,cv2.COLOR_BGR2RGB),600,600), " Perspective GT ROI")
# Concatenate side by side
combined_row = np.hstack([flat_rgb, roi_rgb, xml_rgb])
base_name = os.path.splitext(os.path.basename(persp_file))[0]
file_name = f"{base_name}_{method.lower()}.png"
cv2.imwrite(file_name, cv2.cvtColor(combined_row,cv2.COLOR_RGB2BGR))
gallery_paths.append(file_name)
download_files.append(file_name)
while len(download_files)<5:
download_files.append(None)
return gallery_paths, download_files[0], download_files[1], download_files[2], download_files[3], download_files[4]
# ---------------- Gradio UI ----------------
iface = gr.Interface(
fn=homography_all_detectors,
inputs=[
gr.Image(label="Upload Flat Image",type="filepath"),
gr.Image(label="Upload Perspective Image",type="filepath"),
gr.File(label="Upload mockup.json",file_types=[".json"]),
gr.File(label="Upload XML file",file_types=[".xml"])
],
outputs=[
gr.Gallery(label="Results per Detector",show_label=True),
gr.File(label="Download SIFT Result"),
gr.File(label="Download ORB Result"),
gr.File(label="Download BRISK Result"),
gr.File(label="Download KAZE Result"),
gr.File(label="Download AKAZE Result")
],
title="Homography ROI + XML GT",
description="Flat with ROI + Perspective ROI (Homography + GT). Aspect ratio preserved, images centered in uniform boxes, headings added."
)
iface.launch()
|