File size: 15,382 Bytes
1cf2abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
Metadata-Version: 2.1
Name: ctransformers
Version: 0.2.11
Summary: Python bindings for the Transformer models implemented in C/C++ using GGML library.
Home-page: https://github.com/marella/ctransformers
Author: Ravindra Marella
Author-email: mv.ravindra007@gmail.com
License: MIT
Keywords: ctransformers transformers ai llm
Classifier: Development Status :: 1 - Planning
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 3
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Mathematics
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Software Development
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Description-Content-Type: text/markdown
Provides-Extra: tests
License-File: LICENSE

# [C Transformers](https://github.com/marella/ctransformers) [![PyPI](https://img.shields.io/pypi/v/ctransformers)](https://pypi.org/project/ctransformers/) [![tests](https://github.com/marella/ctransformers/actions/workflows/tests.yml/badge.svg)](https://github.com/marella/ctransformers/actions/workflows/tests.yml) [![build](https://github.com/marella/ctransformers/actions/workflows/build.yml/badge.svg)](https://github.com/marella/ctransformers/actions/workflows/build.yml)

Python bindings for the Transformer models implemented in C/C++ using [GGML](https://github.com/ggerganov/ggml) library.

> Also see [ChatDocs](https://github.com/marella/chatdocs)

- [Supported Models](#supported-models)
- [Installation](#installation)
- [Usage](#usage)
  - [Hugging Face Hub](#hugging-face-hub)
  - [LangChain](#langchain)
  - [GPU](#gpu)
- [Documentation](#documentation)
- [License](#license)

## Supported Models

| Models                | Model Type  |
| :-------------------- | ----------- |
| GPT-2                 | `gpt2`      |
| GPT-J, GPT4All-J      | `gptj`      |
| GPT-NeoX, StableLM    | `gpt_neox`  |
| LLaMA                 | `llama`     |
| MPT                   | `mpt`       |
| Dolly V2              | `dolly-v2`  |
| StarCoder, StarChat   | `starcoder` |
| Falcon (Experimental) | `falcon`    |

## Installation

```sh
pip install ctransformers
```

For GPU (CUDA) support, set environment variable `CT_CUBLAS=1` and install from source using:

```sh
CT_CUBLAS=1 pip install ctransformers --no-binary ctransformers
```

<details>
<summary><strong>Show commands for Windows</strong></summary><br>

On Windows PowerShell run:

```sh
$env:CT_CUBLAS=1
pip install ctransformers --no-binary ctransformers
```

On Windows Command Prompt run:

```sh
set CT_CUBLAS=1
pip install ctransformers --no-binary ctransformers
```

</details>

## Usage

It provides a unified interface for all models:

```py
from ctransformers import AutoModelForCausalLM

llm = AutoModelForCausalLM.from_pretrained('/path/to/ggml-gpt-2.bin', model_type='gpt2')

print(llm('AI is going to'))
```

[Run in Google Colab](https://colab.research.google.com/drive/1GMhYMUAv_TyZkpfvUI1NirM8-9mCXQyL)

If you are getting `illegal instruction` error, try using `lib='avx'` or `lib='basic'`:

```py
llm = AutoModelForCausalLM.from_pretrained('/path/to/ggml-gpt-2.bin', model_type='gpt2', lib='avx')
```

It provides a generator interface for more control:

```py
tokens = llm.tokenize('AI is going to')

for token in llm.generate(tokens):
    print(llm.detokenize(token))
```

It can be used with a custom or Hugging Face tokenizer:

```py
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('gpt2')

tokens = tokenizer.encode('AI is going to')

for token in llm.generate(tokens):
    print(tokenizer.decode(token))
```

It also provides access to the low-level C API. See [Documentation](#documentation) section below.

### Hugging Face Hub

It can be used with models hosted on the Hub:

```py
llm = AutoModelForCausalLM.from_pretrained('marella/gpt-2-ggml')
```

If a model repo has multiple model files (`.bin` files), specify a model file using:

```py
llm = AutoModelForCausalLM.from_pretrained('marella/gpt-2-ggml', model_file='ggml-model.bin')
```

It can be used with your own models uploaded on the Hub. For better user experience, upload only one model per repo.

To use it with your own model, add `config.json` file to your model repo specifying the `model_type`:

```json
{
  "model_type": "gpt2"
}
```

You can also specify additional parameters under `task_specific_params.text-generation`.

See [marella/gpt-2-ggml](https://huggingface.co/marella/gpt-2-ggml/blob/main/config.json) for a minimal example and [marella/gpt-2-ggml-example](https://huggingface.co/marella/gpt-2-ggml-example/blob/main/config.json) for a full example.

### LangChain

It is integrated into LangChain. See [LangChain docs](https://python.langchain.com/docs/ecosystem/integrations/ctransformers).

### GPU

> **Note:** Currently only LLaMA models have GPU support.

To run some of the model layers on GPU, set the `gpu_layers` parameter:

```py
llm = AutoModelForCausalLM.from_pretrained('/path/to/ggml-llama.bin', model_type='llama', gpu_layers=50)
```

[Run in Google Colab](https://colab.research.google.com/drive/1Ihn7iPCYiqlTotpkqa1tOhUIpJBrJ1Tp)

## Documentation

<!-- API_DOCS -->

### Config

| Parameter            | Type        | Description                                              | Default |
| :------------------- | :---------- | :------------------------------------------------------- | :------ |
| `top_k`              | `int`       | The top-k value to use for sampling.                     | `40`    |
| `top_p`              | `float`     | The top-p value to use for sampling.                     | `0.95`  |
| `temperature`        | `float`     | The temperature to use for sampling.                     | `0.8`   |
| `repetition_penalty` | `float`     | The repetition penalty to use for sampling.              | `1.1`   |
| `last_n_tokens`      | `int`       | The number of last tokens to use for repetition penalty. | `64`    |
| `seed`               | `int`       | The seed value to use for sampling tokens.               | `-1`    |
| `max_new_tokens`     | `int`       | The maximum number of new tokens to generate.            | `256`   |
| `stop`               | `List[str]` | A list of sequences to stop generation when encountered. | `None`  |
| `stream`             | `bool`      | Whether to stream the generated text.                    | `False` |
| `reset`              | `bool`      | Whether to reset the model state before generating text. | `True`  |
| `batch_size`         | `int`       | The batch size to use for evaluating tokens.             | `8`     |
| `threads`            | `int`       | The number of threads to use for evaluating tokens.      | `-1`    |
| `context_length`     | `int`       | The maximum context length to use.                       | `-1`    |
| `gpu_layers`         | `int`       | The number of layers to run on GPU.                      | `0`     |

> **Note:** Currently only LLaMA and MPT models support the `context_length` parameter and only LLaMA models support the `gpu_layers` parameter.

### <kbd>class</kbd> `AutoModelForCausalLM`

---

#### <kbd>classmethod</kbd> `AutoModelForCausalLM.from_pretrained`

```python
from_pretrained(
    model_path_or_repo_id: str,
    model_type: Optional[str] = None,
    model_file: Optional[str] = None,
    config: Optional[ctransformers.hub.AutoConfig] = None,
    lib: Optional[str] = None,
    local_files_only: bool = False,
    **kwargs
) → LLM
```

Loads the language model from a local file or remote repo.

**Args:**

- <b>`model_path_or_repo_id`</b>: The path to a model file or directory or the name of a Hugging Face Hub model repo.
- <b>`model_type`</b>: The model type.
- <b>`model_file`</b>: The name of the model file in repo or directory.
- <b>`config`</b>: `AutoConfig` object.
- <b>`lib`</b>: The path to a shared library or one of `avx2`, `avx`, `basic`.
- <b>`local_files_only`</b>: Whether or not to only look at local files (i.e., do not try to download the model).

**Returns:**
`LLM` object.

### <kbd>class</kbd> `LLM`

### <kbd>method</kbd> `LLM.__init__`

```python
__init__(
    model_path: str,
    model_type: str,
    config: Optional[ctransformers.llm.Config] = None,
    lib: Optional[str] = None
)
```

Loads the language model from a local file.

**Args:**

- <b>`model_path`</b>: The path to a model file.
- <b>`model_type`</b>: The model type.
- <b>`config`</b>: `Config` object.
- <b>`lib`</b>: The path to a shared library or one of `avx2`, `avx`, `basic`.

---

##### <kbd>property</kbd> LLM.config

The config object.

---

##### <kbd>property</kbd> LLM.context_length

The context length of model.

---

##### <kbd>property</kbd> LLM.embeddings

The input embeddings.

---

##### <kbd>property</kbd> LLM.eos_token_id

The end-of-sequence token.

---

##### <kbd>property</kbd> LLM.logits

The unnormalized log probabilities.

---

##### <kbd>property</kbd> LLM.model_path

The path to the model file.

---

##### <kbd>property</kbd> LLM.model_type

The model type.

---

##### <kbd>property</kbd> LLM.vocab_size

The number of tokens in vocabulary.

---

#### <kbd>method</kbd> `LLM.detokenize`

```python
detokenize(tokens: Sequence[int], decode: bool = True) → Union[str, bytes]
```

Converts a list of tokens to text.

**Args:**

- <b>`tokens`</b>: The list of tokens.
- <b>`decode`</b>: Whether to decode the text as UTF-8 string.

**Returns:**
The combined text of all tokens.

---

#### <kbd>method</kbd> `LLM.embed`

```python
embed(
    input: Union[str, Sequence[int]],
    batch_size: Optional[int] = None,
    threads: Optional[int] = None
) → List[float]
```

Computes embeddings for a text or list of tokens.

> **Note:** Currently only LLaMA models support embeddings.

**Args:**

- <b>`input`</b>: The input text or list of tokens to get embeddings for.
- <b>`batch_size`</b>: The batch size to use for evaluating tokens. Default: `8`
- <b>`threads`</b>: The number of threads to use for evaluating tokens. Default: `-1`

**Returns:**
The input embeddings.

---

#### <kbd>method</kbd> `LLM.eval`

```python
eval(
    tokens: Sequence[int],
    batch_size: Optional[int] = None,
    threads: Optional[int] = None
) → None
```

Evaluates a list of tokens.

**Args:**

- <b>`tokens`</b>: The list of tokens to evaluate.
- <b>`batch_size`</b>: The batch size to use for evaluating tokens. Default: `8`
- <b>`threads`</b>: The number of threads to use for evaluating tokens. Default: `-1`

---

#### <kbd>method</kbd> `LLM.generate`

```python
generate(
    tokens: Sequence[int],
    top_k: Optional[int] = None,
    top_p: Optional[float] = None,
    temperature: Optional[float] = None,
    repetition_penalty: Optional[float] = None,
    last_n_tokens: Optional[int] = None,
    seed: Optional[int] = None,
    batch_size: Optional[int] = None,
    threads: Optional[int] = None,
    reset: Optional[bool] = None
) → Generator[int, NoneType, NoneType]
```

Generates new tokens from a list of tokens.

**Args:**

- <b>`tokens`</b>: The list of tokens to generate tokens from.
- <b>`top_k`</b>: The top-k value to use for sampling. Default: `40`
- <b>`top_p`</b>: The top-p value to use for sampling. Default: `0.95`
- <b>`temperature`</b>: The temperature to use for sampling. Default: `0.8`
- <b>`repetition_penalty`</b>: The repetition penalty to use for sampling. Default: `1.1`
- <b>`last_n_tokens`</b>: The number of last tokens to use for repetition penalty. Default: `64`
- <b>`seed`</b>: The seed value to use for sampling tokens. Default: `-1`
- <b>`batch_size`</b>: The batch size to use for evaluating tokens. Default: `8`
- <b>`threads`</b>: The number of threads to use for evaluating tokens. Default: `-1`
- <b>`reset`</b>: Whether to reset the model state before generating text. Default: `True`

**Returns:**
The generated tokens.

---

#### <kbd>method</kbd> `LLM.is_eos_token`

```python
is_eos_token(token: int) → bool
```

Checks if a token is an end-of-sequence token.

**Args:**

- <b>`token`</b>: The token to check.

**Returns:**
`True` if the token is an end-of-sequence token else `False`.

---

#### <kbd>method</kbd> `LLM.reset`

```python
reset() → None
```

Resets the model state.

---

#### <kbd>method</kbd> `LLM.sample`

```python
sample(
    top_k: Optional[int] = None,
    top_p: Optional[float] = None,
    temperature: Optional[float] = None,
    repetition_penalty: Optional[float] = None,
    last_n_tokens: Optional[int] = None,
    seed: Optional[int] = None
) → int
```

Samples a token from the model.

**Args:**

- <b>`top_k`</b>: The top-k value to use for sampling. Default: `40`
- <b>`top_p`</b>: The top-p value to use for sampling. Default: `0.95`
- <b>`temperature`</b>: The temperature to use for sampling. Default: `0.8`
- <b>`repetition_penalty`</b>: The repetition penalty to use for sampling. Default: `1.1`
- <b>`last_n_tokens`</b>: The number of last tokens to use for repetition penalty. Default: `64`
- <b>`seed`</b>: The seed value to use for sampling tokens. Default: `-1`

**Returns:**
The sampled token.

---

#### <kbd>method</kbd> `LLM.tokenize`

```python
tokenize(text: str) → List[int]
```

Converts a text into list of tokens.

**Args:**

- <b>`text`</b>: The text to tokenize.

**Returns:**
The list of tokens.

---

#### <kbd>method</kbd> `LLM.__call__`

```python
__call__(
    prompt: str,
    max_new_tokens: Optional[int] = None,
    top_k: Optional[int] = None,
    top_p: Optional[float] = None,
    temperature: Optional[float] = None,
    repetition_penalty: Optional[float] = None,
    last_n_tokens: Optional[int] = None,
    seed: Optional[int] = None,
    batch_size: Optional[int] = None,
    threads: Optional[int] = None,
    stop: Optional[Sequence[str]] = None,
    stream: Optional[bool] = None,
    reset: Optional[bool] = None
) → Union[str, Generator[str, NoneType, NoneType]]
```

Generates text from a prompt.

**Args:**

- <b>`prompt`</b>: The prompt to generate text from.
- <b>`max_new_tokens`</b>: The maximum number of new tokens to generate. Default: `256`
- <b>`top_k`</b>: The top-k value to use for sampling. Default: `40`
- <b>`top_p`</b>: The top-p value to use for sampling. Default: `0.95`
- <b>`temperature`</b>: The temperature to use for sampling. Default: `0.8`
- <b>`repetition_penalty`</b>: The repetition penalty to use for sampling. Default: `1.1`
- <b>`last_n_tokens`</b>: The number of last tokens to use for repetition penalty. Default: `64`
- <b>`seed`</b>: The seed value to use for sampling tokens. Default: `-1`
- <b>`batch_size`</b>: The batch size to use for evaluating tokens. Default: `8`
- <b>`threads`</b>: The number of threads to use for evaluating tokens. Default: `-1`
- <b>`stop`</b>: A list of sequences to stop generation when encountered. Default: `None`
- <b>`stream`</b>: Whether to stream the generated text. Default: `False`
- <b>`reset`</b>: Whether to reset the model state before generating text. Default: `True`

**Returns:**
The generated text.

<!-- API_DOCS -->

## License

[MIT](https://github.com/marella/ctransformers/blob/main/LICENSE)