File size: 18,068 Bytes
d0660e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Import utilities: Utilities related to imports and our lazy inits.
"""
import importlib.util
import operator as op
import os
import sys
from collections import OrderedDict
from typing import Union

from huggingface_hub.utils import is_jinja_available  # noqa: F401
from packaging import version
from packaging.version import Version, parse

from . import logging


# The package importlib_metadata is in a different place, depending on the python version.
if sys.version_info < (3, 8):
    import importlib_metadata
else:
    import importlib.metadata as importlib_metadata


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})

USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()
USE_SAFETENSORS = os.environ.get("USE_SAFETENSORS", "AUTO").upper()

STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt}

_torch_version = "N/A"
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
    _torch_available = importlib.util.find_spec("torch") is not None
    if _torch_available:
        try:
            _torch_version = importlib_metadata.version("torch")
            logger.info(f"PyTorch version {_torch_version} available.")
        except importlib_metadata.PackageNotFoundError:
            _torch_available = False
else:
    logger.info("Disabling PyTorch because USE_TORCH is set")
    _torch_available = False


_tf_version = "N/A"
if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
    _tf_available = importlib.util.find_spec("tensorflow") is not None
    if _tf_available:
        candidates = (
            "tensorflow",
            "tensorflow-cpu",
            "tensorflow-gpu",
            "tf-nightly",
            "tf-nightly-cpu",
            "tf-nightly-gpu",
            "intel-tensorflow",
            "intel-tensorflow-avx512",
            "tensorflow-rocm",
            "tensorflow-macos",
            "tensorflow-aarch64",
        )
        _tf_version = None
        # For the metadata, we have to look for both tensorflow and tensorflow-cpu
        for pkg in candidates:
            try:
                _tf_version = importlib_metadata.version(pkg)
                break
            except importlib_metadata.PackageNotFoundError:
                pass
        _tf_available = _tf_version is not None
    if _tf_available:
        if version.parse(_tf_version) < version.parse("2"):
            logger.info(f"TensorFlow found but with version {_tf_version}. Diffusers requires version 2 minimum.")
            _tf_available = False
        else:
            logger.info(f"TensorFlow version {_tf_version} available.")
else:
    logger.info("Disabling Tensorflow because USE_TORCH is set")
    _tf_available = False

_jax_version = "N/A"
_flax_version = "N/A"
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
    _flax_available = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("flax") is not None
    if _flax_available:
        try:
            _jax_version = importlib_metadata.version("jax")
            _flax_version = importlib_metadata.version("flax")
            logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
        except importlib_metadata.PackageNotFoundError:
            _flax_available = False
else:
    _flax_available = False

if USE_SAFETENSORS in ENV_VARS_TRUE_AND_AUTO_VALUES:
    _safetensors_available = importlib.util.find_spec("safetensors") is not None
    if _safetensors_available:
        try:
            _safetensors_version = importlib_metadata.version("safetensors")
            logger.info(f"Safetensors version {_safetensors_version} available.")
        except importlib_metadata.PackageNotFoundError:
            _safetensors_available = False
else:
    logger.info("Disabling Safetensors because USE_TF is set")
    _safetensors_available = False

_transformers_available = importlib.util.find_spec("transformers") is not None
try:
    _transformers_version = importlib_metadata.version("transformers")
    logger.debug(f"Successfully imported transformers version {_transformers_version}")
except importlib_metadata.PackageNotFoundError:
    _transformers_available = False


_inflect_available = importlib.util.find_spec("inflect") is not None
try:
    _inflect_version = importlib_metadata.version("inflect")
    logger.debug(f"Successfully imported inflect version {_inflect_version}")
except importlib_metadata.PackageNotFoundError:
    _inflect_available = False


_unidecode_available = importlib.util.find_spec("unidecode") is not None
try:
    _unidecode_version = importlib_metadata.version("unidecode")
    logger.debug(f"Successfully imported unidecode version {_unidecode_version}")
except importlib_metadata.PackageNotFoundError:
    _unidecode_available = False


_onnxruntime_version = "N/A"
_onnx_available = importlib.util.find_spec("onnxruntime") is not None
if _onnx_available:
    candidates = (
        "onnxruntime",
        "onnxruntime-gpu",
        "onnxruntime-directml",
        "onnxruntime-openvino",
        "ort_nightly_directml",
    )
    _onnxruntime_version = None
    # For the metadata, we have to look for both onnxruntime and onnxruntime-gpu
    for pkg in candidates:
        try:
            _onnxruntime_version = importlib_metadata.version(pkg)
            break
        except importlib_metadata.PackageNotFoundError:
            pass
    _onnx_available = _onnxruntime_version is not None
    if _onnx_available:
        logger.debug(f"Successfully imported onnxruntime version {_onnxruntime_version}")


_scipy_available = importlib.util.find_spec("scipy") is not None
try:
    _scipy_version = importlib_metadata.version("scipy")
    logger.debug(f"Successfully imported scipy version {_scipy_version}")
except importlib_metadata.PackageNotFoundError:
    _scipy_available = False

_librosa_available = importlib.util.find_spec("librosa") is not None
try:
    _librosa_version = importlib_metadata.version("librosa")
    logger.debug(f"Successfully imported librosa version {_librosa_version}")
except importlib_metadata.PackageNotFoundError:
    _librosa_available = False

_accelerate_available = importlib.util.find_spec("accelerate") is not None
try:
    _accelerate_version = importlib_metadata.version("accelerate")
    logger.debug(f"Successfully imported accelerate version {_accelerate_version}")
except importlib_metadata.PackageNotFoundError:
    _accelerate_available = False

_xformers_available = importlib.util.find_spec("xformers") is not None
try:
    _xformers_version = importlib_metadata.version("xformers")
    if _torch_available:
        import torch

        if version.Version(torch.__version__) < version.Version("1.12"):
            raise ValueError("PyTorch should be >= 1.12")
    logger.debug(f"Successfully imported xformers version {_xformers_version}")
except importlib_metadata.PackageNotFoundError:
    _xformers_available = False

_k_diffusion_available = importlib.util.find_spec("k_diffusion") is not None
try:
    _k_diffusion_version = importlib_metadata.version("k_diffusion")
    logger.debug(f"Successfully imported k-diffusion version {_k_diffusion_version}")
except importlib_metadata.PackageNotFoundError:
    _k_diffusion_available = False

_wandb_available = importlib.util.find_spec("wandb") is not None
try:
    _wandb_version = importlib_metadata.version("wandb")
    logger.debug(f"Successfully imported wandb version {_wandb_version }")
except importlib_metadata.PackageNotFoundError:
    _wandb_available = False

_omegaconf_available = importlib.util.find_spec("omegaconf") is not None
try:
    _omegaconf_version = importlib_metadata.version("omegaconf")
    logger.debug(f"Successfully imported omegaconf version {_omegaconf_version}")
except importlib_metadata.PackageNotFoundError:
    _omegaconf_available = False

_tensorboard_available = importlib.util.find_spec("tensorboard")
try:
    _tensorboard_version = importlib_metadata.version("tensorboard")
    logger.debug(f"Successfully imported tensorboard version {_tensorboard_version}")
except importlib_metadata.PackageNotFoundError:
    _tensorboard_available = False


def is_torch_available():
    return _torch_available


def is_safetensors_available():
    return _safetensors_available


def is_tf_available():
    return _tf_available


def is_flax_available():
    return _flax_available


def is_transformers_available():
    return _transformers_available


def is_inflect_available():
    return _inflect_available


def is_unidecode_available():
    return _unidecode_available


def is_onnx_available():
    return _onnx_available


def is_scipy_available():
    return _scipy_available


def is_librosa_available():
    return _librosa_available


def is_xformers_available():
    return _xformers_available


def is_accelerate_available():
    return _accelerate_available


def is_k_diffusion_available():
    return _k_diffusion_available


def is_wandb_available():
    return _wandb_available


def is_omegaconf_available():
    return _omegaconf_available


def is_tensorboard_available():
    return _tensorboard_available


# docstyle-ignore
FLAX_IMPORT_ERROR = """
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
"""

# docstyle-ignore
INFLECT_IMPORT_ERROR = """
{0} requires the inflect library but it was not found in your environment. You can install it with pip: `pip install
inflect`
"""

# docstyle-ignore
PYTORCH_IMPORT_ERROR = """
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
"""

# docstyle-ignore
ONNX_IMPORT_ERROR = """
{0} requires the onnxruntime library but it was not found in your environment. You can install it with pip: `pip
install onnxruntime`
"""

# docstyle-ignore
SCIPY_IMPORT_ERROR = """
{0} requires the scipy library but it was not found in your environment. You can install it with pip: `pip install
scipy`
"""

# docstyle-ignore
LIBROSA_IMPORT_ERROR = """
{0} requires the librosa library but it was not found in your environment.  Checkout the instructions on the
installation page: https://librosa.org/doc/latest/install.html and follow the ones that match your environment.
"""

# docstyle-ignore
TRANSFORMERS_IMPORT_ERROR = """
{0} requires the transformers library but it was not found in your environment. You can install it with pip: `pip
install transformers`
"""

# docstyle-ignore
UNIDECODE_IMPORT_ERROR = """
{0} requires the unidecode library but it was not found in your environment. You can install it with pip: `pip install
Unidecode`
"""

# docstyle-ignore
K_DIFFUSION_IMPORT_ERROR = """
{0} requires the k-diffusion library but it was not found in your environment. You can install it with pip: `pip
install k-diffusion`
"""

# docstyle-ignore
WANDB_IMPORT_ERROR = """
{0} requires the wandb library but it was not found in your environment. You can install it with pip: `pip
install wandb`
"""

# docstyle-ignore
OMEGACONF_IMPORT_ERROR = """
{0} requires the omegaconf library but it was not found in your environment. You can install it with pip: `pip
install omegaconf`
"""

# docstyle-ignore
TENSORBOARD_IMPORT_ERROR = """
{0} requires the tensorboard library but it was not found in your environment. You can install it with pip: `pip
install tensorboard`
"""

BACKENDS_MAPPING = OrderedDict(
    [
        ("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
        ("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)),
        ("onnx", (is_onnx_available, ONNX_IMPORT_ERROR)),
        ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
        ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
        ("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)),
        ("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)),
        ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
        ("k_diffusion", (is_k_diffusion_available, K_DIFFUSION_IMPORT_ERROR)),
        ("wandb", (is_wandb_available, WANDB_IMPORT_ERROR)),
        ("omegaconf", (is_omegaconf_available, OMEGACONF_IMPORT_ERROR)),
        ("tensorboard", (_tensorboard_available, TENSORBOARD_IMPORT_ERROR)),
    ]
)


def requires_backends(obj, backends):
    if not isinstance(backends, (list, tuple)):
        backends = [backends]

    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
    checks = (BACKENDS_MAPPING[backend] for backend in backends)
    failed = [msg.format(name) for available, msg in checks if not available()]
    if failed:
        raise ImportError("".join(failed))

    if name in [
        "VersatileDiffusionTextToImagePipeline",
        "VersatileDiffusionPipeline",
        "VersatileDiffusionDualGuidedPipeline",
        "StableDiffusionImageVariationPipeline",
        "UnCLIPPipeline",
    ] and is_transformers_version("<", "4.25.0"):
        raise ImportError(
            f"You need to install `transformers>=4.25` in order to use {name}: \n```\n pip install"
            " --upgrade transformers \n```"
        )

    if name in ["StableDiffusionDepth2ImgPipeline", "StableDiffusionPix2PixZeroPipeline"] and is_transformers_version(
        "<", "4.26.0"
    ):
        raise ImportError(
            f"You need to install `transformers>=4.26` in order to use {name}: \n```\n pip install"
            " --upgrade transformers \n```"
        )


class DummyObject(type):
    """
    Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
    `requires_backend` each time a user tries to access any method of that class.
    """

    def __getattr__(cls, key):
        if key.startswith("_"):
            return super().__getattr__(cls, key)
        requires_backends(cls, cls._backends)


# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319
def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
    """
    Args:
    Compares a library version to some requirement using a given operation.
        library_or_version (`str` or `packaging.version.Version`):
            A library name or a version to check.
        operation (`str`):
            A string representation of an operator, such as `">"` or `"<="`.
        requirement_version (`str`):
            The version to compare the library version against
    """
    if operation not in STR_OPERATION_TO_FUNC.keys():
        raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}")
    operation = STR_OPERATION_TO_FUNC[operation]
    if isinstance(library_or_version, str):
        library_or_version = parse(importlib_metadata.version(library_or_version))
    return operation(library_or_version, parse(requirement_version))


# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338
def is_torch_version(operation: str, version: str):
    """
    Args:
    Compares the current PyTorch version to a given reference with an operation.
        operation (`str`):
            A string representation of an operator, such as `">"` or `"<="`
        version (`str`):
            A string version of PyTorch
    """
    return compare_versions(parse(_torch_version), operation, version)


def is_transformers_version(operation: str, version: str):
    """
    Args:
    Compares the current Transformers version to a given reference with an operation.
        operation (`str`):
            A string representation of an operator, such as `">"` or `"<="`
        version (`str`):
            A version string
    """
    if not _transformers_available:
        return False
    return compare_versions(parse(_transformers_version), operation, version)


def is_accelerate_version(operation: str, version: str):
    """
    Args:
    Compares the current Accelerate version to a given reference with an operation.
        operation (`str`):
            A string representation of an operator, such as `">"` or `"<="`
        version (`str`):
            A version string
    """
    if not _accelerate_available:
        return False
    return compare_versions(parse(_accelerate_version), operation, version)


def is_k_diffusion_version(operation: str, version: str):
    """
    Args:
    Compares the current k-diffusion version to a given reference with an operation.
        operation (`str`):
            A string representation of an operator, such as `">"` or `"<="`
        version (`str`):
            A version string
    """
    if not _k_diffusion_available:
        return False
    return compare_versions(parse(_k_diffusion_version), operation, version)


class OptionalDependencyNotAvailable(BaseException):
    """An error indicating that an optional dependency of Diffusers was not found in the environment."""