Spaces:
Runtime error
Runtime error
File size: 1,161 Bytes
f8f4b5f 05c7436 4a7c4bb f8f4b5f 9e29b10 f8f4b5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
import joblib # Load Joblib file
import json # Load JSON file
from sklearn.feature_extraction.text import CountVectorizer # Convert text to BOW format
from flask import Flask, request, jsonify # Flask Server
from tensorflow.keras.preprocessing.text import Tokenizer # tokenizing text documents into sequences of tokens (Seq Model)
from tensorflow.keras.preprocessing.sequence import pad_sequences # ensure that all sequences in a dataset have the same length (Seq Model)
from tensorflow.keras.models import load_model # load a pre-trained Keras model saved in the Hierarchical Data Format (HDF5) file format
import numpy as np # scientific computing in Python
import streamlit as st
# load all the models and vectorizer (global vocabulary)
# Seq_model = load_model('./LSTM.h5') # Sequential
SVM_Linear_model = joblib.load("SVM_Linear_Model.joblib") # SVM
logistic_model = joblib.load("Logistic_Model.joblib") # Logistic
vectorizer = joblib.load('vectorizer.joblib') # global vocabulary
tokenizer = joblib.load('tokenizer.joblib')
# Test
x = st.slider('Select a value')
st.write(x, 'squared is', x * x)
if url:
result = categorize(url)
st.json(result) |