File size: 8,905 Bytes
0bae6cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from __future__ import annotations

import logging
import os

import colorama
import commentjson as cjson

from modules import config

from ..index_func import *
from ..presets import *
from ..utils import *
from .base_model import BaseLLMModel, ModelType


def get_model(
    model_name,
    lora_model_path=None,
    access_key=None,
    temperature=None,
    top_p=None,
    system_prompt=None,
    user_name="",
    original_model = None,
    common_model=None,
    common_tokenizer=None
) -> BaseLLMModel:
    msg = i18n("模型设置为了:") + f" {model_name}"
    model_type = ModelType.get_type(model_name)
    lora_selector_visibility = False
    lora_choices = ["No LoRA"]
    dont_change_lora_selector = False
    if model_type != ModelType.OpenAI:
        config.local_embedding = True
    # del current_model.model
    model = original_model
    chatbot = gr.Chatbot.update(label=model_name)
    try:
        if model_type == ModelType.OpenAI:
            logging.info(f"正在加载OpenAI模型: {model_name}")
            from .OpenAI import OpenAIClient
            access_key = os.environ.get("OPENAI_API_KEY", access_key)
            model = OpenAIClient(
                model_name=model_name,
                api_key=access_key,
                system_prompt=system_prompt,
                user_name=user_name,
            )
        elif model_type == ModelType.OpenAIInstruct:
            logging.info(f"正在加载OpenAI Instruct模型: {model_name}")
            from .OpenAIInstruct import OpenAI_Instruct_Client
            access_key = os.environ.get("OPENAI_API_KEY", access_key)
            model = OpenAI_Instruct_Client(
                model_name, api_key=access_key, user_name=user_name)
        elif model_type == ModelType.OpenAIVision:
            logging.info(f"正在加载OpenAI Vision模型: {model_name}")
            from .OpenAIVision import OpenAIVisionClient
            access_key = os.environ.get("OPENAI_API_KEY", access_key)
            model = OpenAIVisionClient(
                model_name, api_key=access_key, user_name=user_name)
        elif model_type == ModelType.ChatGLM:
            logging.info(f"正在加载ChatGLM模型: {model_name}")
            from .ChatGLM import ChatGLM_Client
            model = ChatGLM_Client(model_name, user_name=user_name)
        elif model_type == ModelType.LLaMA and lora_model_path == "":
            msg = f"现在请为 {model_name} 选择LoRA模型"
            logging.info(msg)
            lora_selector_visibility = True
            if os.path.isdir("lora"):
                lora_choices = ["No LoRA"] + get_file_names_by_pinyin("lora", filetypes=[""])
        elif model_type == ModelType.LLaMA and lora_model_path != "":
            logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}")
            from .LLaMA import LLaMA_Client
            dont_change_lora_selector = True
            if lora_model_path == "No LoRA":
                lora_model_path = None
                msg += " + No LoRA"
            else:
                msg += f" + {lora_model_path}"
            model = LLaMA_Client(
                model_name, lora_model_path, user_name=user_name)
        elif model_type == ModelType.XMChat:
            from .XMChat import XMChat
            if os.environ.get("XMCHAT_API_KEY") != "":
                access_key = os.environ.get("XMCHAT_API_KEY")
            model = XMChat(api_key=access_key, user_name=user_name, common_model=common_model, common_tokenizer=common_tokenizer)
        elif model_type == ModelType.StableLM:
            from .StableLM import StableLM_Client
            model = StableLM_Client(model_name, user_name=user_name)
        elif model_type == ModelType.MOSS:
            from .MOSS import MOSS_Client
            model = MOSS_Client(model_name, user_name=user_name)
        elif model_type == ModelType.YuanAI:
            from .inspurai import Yuan_Client
            model = Yuan_Client(model_name, api_key=access_key,
                                user_name=user_name, system_prompt=system_prompt)
        elif model_type == ModelType.Minimax:
            from .minimax import MiniMax_Client
            if os.environ.get("MINIMAX_API_KEY") != "":
                access_key = os.environ.get("MINIMAX_API_KEY")
            model = MiniMax_Client(
                model_name, api_key=access_key, user_name=user_name, system_prompt=system_prompt)
        elif model_type == ModelType.ChuanhuAgent:
            from .ChuanhuAgent import ChuanhuAgent_Client
            model = ChuanhuAgent_Client(model_name, access_key, user_name=user_name)
            msg = i18n("启用的工具:") + ", ".join([i.name for i in model.tools])
        elif model_type == ModelType.GooglePaLM:
            from .GooglePaLM import Google_PaLM_Client
            access_key = os.environ.get("GOOGLE_PALM_API_KEY", access_key)
            model = Google_PaLM_Client(
                model_name, access_key, user_name=user_name)
        elif model_type == ModelType.LangchainChat:
            from .Azure import Azure_OpenAI_Client
            model = Azure_OpenAI_Client(model_name, user_name=user_name)
        elif model_type == ModelType.Midjourney:
            from .midjourney import Midjourney_Client
            mj_proxy_api_secret = os.getenv("MIDJOURNEY_PROXY_API_SECRET")
            model = Midjourney_Client(
                model_name, mj_proxy_api_secret, user_name=user_name)
        elif model_type == ModelType.Spark:
            from .spark import Spark_Client
            model = Spark_Client(model_name, os.getenv("SPARK_APPID"), os.getenv(
                "SPARK_API_KEY"), os.getenv("SPARK_API_SECRET"), user_name=user_name)
        elif model_type == ModelType.Claude:
            from .Claude import Claude_Client
            model = Claude_Client(model_name="claude-2", api_secret=os.getenv("CLAUDE_API_SECRET"))
        elif model_type == ModelType.Qwen:
            from .Qwen import Qwen_Client
            model = Qwen_Client(model_name, user_name=user_name)
        elif model_type == ModelType.ERNIE:
            from .ERNIE import ERNIE_Client
            model = ERNIE_Client(model_name, api_key=os.getenv("ERNIE_APIKEY"),secret_key=os.getenv("ERNIE_SECRETKEY"))
        elif model_type == ModelType.DALLE3:
            from .DALLE3 import OpenAI_DALLE3_Client
            access_key = os.environ.get("OPENAI_API_KEY", access_key)
            model = OpenAI_DALLE3_Client(model_name, api_key=access_key, user_name=user_name)
        elif model_type == ModelType.Unknown:
            raise ValueError(f"未知模型: {model_name}")
        logging.info(msg)
    except Exception as e:
        import traceback
        traceback.print_exc()
        msg = f"{STANDARD_ERROR_MSG}: {e}"
    presudo_key = hide_middle_chars(access_key)
    if original_model is not None and model is not None:
        model.history = original_model.history
        model.history_file_path = original_model.history_file_path
    if dont_change_lora_selector:
        return model, msg, chatbot, gr.update(), access_key, presudo_key
    else:
        return model, msg, chatbot, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility), access_key, presudo_key


if __name__ == "__main__":
    with open("config.json", "r", encoding="utf-8") as f:
        openai_api_key = cjson.load(f)["openai_api_key"]
    # set logging level to debug
    logging.basicConfig(level=logging.DEBUG)
    # client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key)
    client = get_model(model_name="chatglm-6b-int4")
    chatbot = []
    stream = False
    # 测试账单功能
    logging.info(colorama.Back.GREEN + "测试账单功能" + colorama.Back.RESET)
    logging.info(client.billing_info())
    # 测试问答
    logging.info(colorama.Back.GREEN + "测试问答" + colorama.Back.RESET)
    question = "巴黎是中国的首都吗?"
    for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
        logging.info(i)
    logging.info(f"测试问答后history : {client.history}")
    # 测试记忆力
    logging.info(colorama.Back.GREEN + "测试记忆力" + colorama.Back.RESET)
    question = "我刚刚问了你什么问题?"
    for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
        logging.info(i)
    logging.info(f"测试记忆力后history : {client.history}")
    # 测试重试功能
    logging.info(colorama.Back.GREEN + "测试重试功能" + colorama.Back.RESET)
    for i in client.retry(chatbot=chatbot, stream=stream):
        logging.info(i)
    logging.info(f"重试后history : {client.history}")
    # # 测试总结功能
    # print(colorama.Back.GREEN + "测试总结功能" + colorama.Back.RESET)
    # chatbot, msg = client.reduce_token_size(chatbot=chatbot)
    # print(chatbot, msg)
    # print(f"总结后history: {client.history}")