Spaces:
Running
Running
File size: 13,083 Bytes
6d0d847 7bbec6f 6d0d847 2115ef1 6d0d847 08d39e4 2115ef1 08d39e4 a40ee94 2115ef1 08d39e4 2115ef1 4a00668 729da04 4a00668 2115ef1 6d0d847 08d39e4 6d0d847 ab58981 6d0d847 08d39e4 ab58981 08d39e4 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 e9e9e4c 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 a40ee94 c7ff547 a40ee94 6d0d847 08d39e4 e9e9e4c 08d39e4 e9e9e4c 08d39e4 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 e9e9e4c 6d0d847 e9e9e4c 08d39e4 6d0d847 08d39e4 6d0d847 a40ee94 6d0d847 e9e9e4c 6d0d847 3c9a4bf 6d0d847 08d39e4 6d0d847 08d39e4 3c9a4bf 08d39e4 e9e9e4c 6d0d847 e9e9e4c 3c9a4bf 6d0d847 08d39e4 6d0d847 b767f30 a40ee94 6d0d847 e9e9e4c 6d0d847 3c9a4bf 6d0d847 08d39e4 6d0d847 08d39e4 3c9a4bf 08d39e4 e9e9e4c 6d0d847 e9e9e4c 3c9a4bf 6d0d847 08d39e4 6d0d847 a40ee94 6d0d847 e9e9e4c 6d0d847 3c9a4bf 6d0d847 08d39e4 6d0d847 08d39e4 3c9a4bf 08d39e4 e9e9e4c 6d0d847 e9e9e4c 3c9a4bf 6d0d847 08d39e4 6d0d847 a40ee94 6d0d847 e9e9e4c 6d0d847 3c9a4bf 6d0d847 08d39e4 6d0d847 08d39e4 3c9a4bf 6d0d847 08d39e4 3c9a4bf 08d39e4 e9e9e4c 6d0d847 e9e9e4c 3c9a4bf 6d0d847 08d39e4 6d0d847 e9e9e4c 6d0d847 3c9a4bf 6d0d847 08d39e4 6d0d847 08d39e4 3c9a4bf 08d39e4 e9e9e4c 6d0d847 e9e9e4c 3c9a4bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import streamlit as st
from app.draw_diagram import *
def dashboard():
with st.container():
st.title("SeaEval")
st.markdown("""
[gh]: https://github.com/SeaEval/SeaEval
[![GitHub watchers](https://img.shields.io/github/watchers/SeaEval/SeaEval?style=social)][gh]
[![GitHub Repo stars](https://img.shields.io/github/stars/SeaEval/SeaEval?style=social)][gh]
""")
st.markdown("#### News")
st.markdown("Nov, 2024: Update layout and support comparison between models with similar model sizes.")
st.divider()
seaeval_url = "https://seaeval.github.io/"
st.markdown("#### What is [SeaEval](%s)?" % seaeval_url)
with st.container():
left_co, cent_co,last_co = st.columns(3)
with cent_co:
st.image("./style/seaeval_overall.png",
# caption="SeaEval data range",
width=500)
st.markdown('''
''')
st.markdown("##### A benchmark for multilingual, multicultral foundation model evaluation consisting of >30 dataset and we are keep expanding over time.")
st.markdown(''':star: How models understand and reason with natural language?
:balloon: Languages: English, Chinese, Malay, Spainish, Indonedian, Vietnamese, Filipino.
''')
st.markdown(''':star: How models comprehend cultural practices, nuances and values?
:balloon: 4 new datasets on Cultural Understanding.
''')
st.markdown(''':star: How models perform across languages in terms of consistency?
:balloon: 2 new datasets with curated metrics for Cross-Linugal Consistency.
''')
with st.container():
left_co, cent_co,last_co = st.columns(3)
with cent_co:
st.image("./style/consistency.png",
# caption="SeaEval data range",
width=500)
st.markdown("##### Evaluation with enhanced cross-lingual capabilities.")
st.markdown(''':star: How models perform according to different (paraphrased) instructions?
:balloon: Each dataset is equipped with 5 different prompts to avoid randomness introduced by instructions,
which is non-negligible..
''')
st.markdown(''':star: Multilingual accuracy and performance consistency across languages.
:balloon: If you can answer the question in your native language, can you answer the same question
correctly in your second/third language?
''')
st.divider()
with st.container():
st.markdown("##### Citations")
st.markdown('''
:round_pushpin: SeaEval Paper \n
@article{SeaEval,
title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
journal={NAACL},
year={2024}
}
''')
def cross_lingual_consistency():
st.title("Task: Cross-Lingual Consistency")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = [
'Cross-MMLU',
'Cross-XQUAD',
'Cross-LogiQA',
'Cross-MMLU-No-Prompt',
]
category_one_dict = {
'Zero Shot': 'zero_shot',
'Few Shot' : 'few_shot'
}
category_two_dict = {
'Cross-MMLU' : 'cross_mmlu',
'Cross-XQUAD' : 'cross_xquad',
'Cross-LogiQA': 'cross_logiqa',
'Cross-MMLU-No-Prompt': 'cross_mmlu_no_prompt'
}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
with right:
sort = st.selectbox('Sort (For Chart)', ['Accuracy','Cross-Lingual Consistency', 'AC3',
'English', 'Chinese', 'Spanish', 'Vietnamese'])
sortby = 'Ascending'
if category_one or category_two or sort or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('cross_lingual', category_one, category_two, sort, sortby, model_size_range)
def cultural_reasoning():
st.title("Task: Cultural Reasoning")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = [
'SG EVAL V2 MCQ',
'SG EVAL V2 Open Ended',
'SG EVAL',
'SG EVAL V1 Cleaned',
'CN EVAL',
'PH EVAL',
'US EVAL'
]
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'
}
category_two_dict = {'SG EVAL': 'sg_eval',
'SG EVAL V1 Cleaned' : 'sg_eval_v1_cleaned',
'SG EVAL V2 MCQ' : 'sg_eval_v2_mcq',
'SG EVAL V2 Open Ended': 'sg_eval_v2_open',
'US EVAL' : 'us_eval',
'CN EVAL' : 'cn_eval',
'PH EVAL' : 'ph_eval'
}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
sortby = 'Ascending'
if category_one or category_two or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('cultural_reasoning', category_one, category_two, 'Accuracy', sortby, model_size_range)
def general_reasoning():
st.title("Task: General Reasoning")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = [
'MMLU',
'CMMLU',
'IndoMMLU',
'C Eval',
'ZBench',
]
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
category_two_dict = {'MMLU': 'mmlu',
'C Eval': 'c_eval',
'CMMLU': 'cmmlu',
'ZBench': 'zbench',
'IndoMMLU': 'indommlu'}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
sortby = 'Ascending'
if category_one or category_two or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('general_reasoning', category_one, category_two, 'Accuracy', sortby, model_size_range)
def flores():
st.title("Task: FLORES-Translation")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = ['Indonesian to English',
'Vitenamese to English',
'Chinese to English',
'Malay to English'
]
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
category_two_dict = {'Indonesian to English': 'ind2eng',
'Vitenamese to English': 'vie2eng',
'Chinese to English': 'zho2eng',
'Malay to English': 'zsm2eng'}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
sortby = 'Ascending'
if category_one or category_two or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('flores_translation', category_one, category_two, 'BLEU', sortby, model_size_range)
def emotion():
st.title("Task: Emotion")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = [
'Indonesian Emotion Classification',
'SST2',
]
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
category_two_dict = {'Indonesian Emotion Classification': 'ind_emotion',
'SST2': 'sst2'}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
sortby = 'Ascending'
if category_one or category_two or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('emotion', category_one, category_two, 'Accuracy', sortby, model_size_range)
def dialogue():
st.title("Task: Dialogue")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = [
'DREAM',
'SAMSum',
'DialogSum',
]
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
category_two_dict = {'DREAM': 'dream',
'SAMSum': 'samsum',
'DialogSum': 'dialogsum'}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with right:
if category_two == 'DREAM':
sort = st.selectbox('Sort', ['Accuracy'])
else:
sort = st.selectbox('Sort', ['Average', 'ROUGE-1', 'ROUGE-2', 'ROUGE-L'])
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
sortby = 'Ascending'
if category_one or category_two or sort or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('dialogue', category_one, category_two, sort, sortby, model_size_range)
def fundamental_nlp_tasks():
st.title("Task: Fundamental NLP Tasks")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = ['OCNLI', 'C3', 'COLA', 'QQP', 'MNLI', 'QNLI', 'WNLI', 'RTE', 'MRPC']
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
category_two_dict = {'OCNLI': 'ocnli',
'C3': 'c3',
'COLA': 'cola',
'QQP': 'qqp',
'MNLI': 'mnli',
'QNLI': 'qnli',
'WNLI': 'wnli',
'RTE': 'rte',
'MRPC': 'mrpc'}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
sortby = 'Ascending'
if category_one or category_two or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('fundamental_nlp_tasks', category_one, category_two, 'Accuracy', sortby, model_size_range)
|