File size: 8,026 Bytes
14b7942
e531eef
 
 
 
14b7942
e531eef
 
b13e78c
e531eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fcb1be
e531eef
 
 
 
 
eefb8e0
e531eef
 
 
5fcb1be
 
 
e531eef
 
 
 
 
 
 
 
f1dc901
e531eef
b13e78c
 
f1dc901
 
 
e531eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aee1475
 
e531eef
 
aee1475
e531eef
 
 
 
 
 
 
 
 
 
 
 
67da2ee
 
 
e531eef
67da2ee
 
 
e531eef
67da2ee
 
 
e531eef
67da2ee
 
 
e531eef
67da2ee
 
 
e531eef
67da2ee
 
 
e531eef
67da2ee
e531eef
67da2ee
 
e531eef
 
 
aee1475
 
e531eef
 
aee1475
e531eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aee1475
 
 
 
 
 
 
 
e531eef
67da2ee
 
 
e531eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16b9f5c
e531eef
 
 
 
 
 
16b9f5c
44c866a
16b9f5c
 
 
 
 
e531eef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import base64

import numpy as np
import streamlit as st
import streamlit.components.v1 as components
from streamlit_mic_recorder import mic_recorder

from utils import load_model, generate_response, bytes_to_array, start_server

def home_page():
    ## Set up home page Title
    col1, col2 = st.columns([1, 4])
    custom_html = """
    <div class="banner">
        <img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRhB2e_AhOe11wKxnnwOmOVg9E7J1MBgiTeYzzFAESwcCP5IbBAc2X8BwGChMfJzwqtVg&usqp=CAU" alt="Banner Image">
    </div>
    <style>
        .banner {
            width: 100%;
            height: 200px;
            overflow: visible;
        }
        .banner img {
            width: 100%;
            object-fit: cover;
        }
    </style>
    """
    with col1:
        components.html(custom_html)
    with col2: 
        st.write("# Welcome to MERaLiON - AudioLLMs 🤖")

    ## Set up home page other information
    st.markdown('')


def audio_llm():    
    with st.sidebar:
        st.divider()
        st.markdown("""<div class="sidebar-intro">
                    <p><strong>Purpose</strong>: Complex Audio Understanding</p>
                    <p><strong>Name</strong>: MERaLiON-AudioLLM-v1</p>
                    <p><strong>Version</strong>: Dec. 20, 2024</p>
                    </div>""", unsafe_allow_html=True)
    
    
    if st.sidebar.button('Clear History'):
        st.session_state.update(messages=[], 
                                on_upload=False, 
                                on_record=False, 
                                on_select=False, 
                                audio_array=np.array([]))   

    if "server" not in st.session_state:
        st.session_state.server = start_server()
    
    if "client" not in st.session_state or 'model_name' not in st.session_state:
        st.session_state.client, st.session_state.model_name = load_model()

    if "audio_array" not in st.session_state:
        st.session_state.audio_base64 = ''
        st.session_state.audio_array = np.array([])
    
    
    if "default_instruction" not in st.session_state: 
        st.session_state.default_instruction = ""
    
    col1, col2, col3 = st.columns(3)
    
    with col1:
        st.markdown("**Record Audio:**")
        
        recording = mic_recorder(
            format="wav", 
            use_container_width=True, 
            callback=lambda: st.session_state.update(on_record=True, messages=[]),
            key='record')
        
        if recording and st.session_state.on_record:
            audio_bytes = recording["bytes"]
            st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
            st.session_state.audio_array = bytes_to_array(audio_bytes)
    
    with col2:
        st.markdown("**Upload Audio:**")

        uploaded_file = st.file_uploader(
            label="**Upload Audio:**", 
            label_visibility="collapsed",
            type=['wav', 'mp3'],
            on_change=lambda: st.session_state.update(on_upload=True, messages=[]),
            key='upload'
        )
        
        if uploaded_file and st.session_state.on_upload:
            audio_bytes = uploaded_file.read()
            st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
            st.session_state.audio_array = bytes_to_array(audio_bytes)

    with col3:
        audio_samples_w_instruct = {
            '1_ASR_IMDA_PART1_ASR_v2_141' : "- Turn the spoken language into a text format.\n\n- Please translate the content into Chinese.",
            '2_ASR_IMDA_PART1_ASR_v2_2258': "- Turn the spoken language into a text format.\n\n- Please translate the content into Chinese.",
            '3_ASR_IMDA_PART1_ASR_v2_2265': "- Turn the spoken language into a text format.",
                    
            '4_ASR_IMDA_PART2_ASR_v2_999' : "- Translate the spoken words into text format.",
            '5_ASR_IMDA_PART2_ASR_v2_2241': "- Translate the spoken words into text format.",
            '6_ASR_IMDA_PART2_ASR_v2_3409': "- Translate the spoken words into text format.",
    
            '7_ASR_IMDA_PART3_30_ASR_v2_2269': "- Need this talk written down, please.",
            '8_ASR_IMDA_PART3_30_ASR_v2_1698': "- Need this talk written down, please.",
            '9_ASR_IMDA_PART3_30_ASR_v2_2474': "- Need this talk written down, please.",

            '10_ASR_IMDA_PART4_30_ASR_v2_1527': "- Write out the dialogue as text.",
            '11_ASR_IMDA_PART4_30_ASR_v2_3771': "- Write out the dialogue as text.",
            '12_ASR_IMDA_PART4_30_ASR_v2_103' : "- Write out the dialogue as text.",
    
            '13_ASR_IMDA_PART5_30_ASR_v2_1446': "- Translate this vocal recording into a textual format.",
            '14_ASR_IMDA_PART5_30_ASR_v2_2281': "- Translate this vocal recording into a textual format.",
            '15_ASR_IMDA_PART5_30_ASR_v2_4388': "- Translate this vocal recording into a textual format.",

            '16_ASR_IMDA_PART6_30_ASR_v2_576': "- Record the spoken word in text form.",
            '17_ASR_IMDA_PART6_30_ASR_v2_1413': "- Record the spoken word in text form.",
            '18_ASR_IMDA_PART6_30_ASR_v2_2834': "- Record the spoken word in text form.",

            '19_ASR_AIShell_zh_ASR_v2_5044': "- Transform the oral presentation into a text document.",

            '20_ASR_LIBRISPEECH_CLEAN_ASR_V2_833': "- Please provide a written transcription of the speech."
        }
        
        audio_sample_names = [audio_sample_name for audio_sample_name in audio_samples_w_instruct.keys()]
       
        st.markdown("**Select Audio:**")
       
        sample_name = st.selectbox(
            label="**Select Audio:**",
            label_visibility="collapsed",
            options=audio_sample_names,
            index=None,
            placeholder="Select an audio sample:",
            on_change=lambda: st.session_state.update(on_select=True, messages=[]),
            key='select')
       
        if sample_name and st.session_state.on_select:
            audio_bytes = open(f"audio_samples/{sample_name}.wav", "rb").read()
            st.session_state.default_instruction = audio_samples_w_instruct[sample_name]
            st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
            st.session_state.audio_array = bytes_to_array(audio_bytes)
    
    st.audio(st.session_state.audio_array, format="audio/wav", sample_rate=16000)
    st.session_state.update(on_upload=False, on_record=False, on_select=False)

    st.markdown("**Model Configuration:**")
    col4, col5, _ = st.columns(3)

    with col4:
        st.slider(label='Temperature', min_value=0.0, max_value=2.0, value=0.7, key='temperature')

    with col5:
        st.slider(label='Top P', min_value=0.0, max_value=1.0, value=1.0, key='top_p')

    st.markdown("**Example Instruction:**")
    st.write(st.session_state.default_instruction)

    st.markdown(
        """
        <style>
            .st-emotion-cache-1c7y2kd {
                flex-direction: row-reverse;
                text-align: right;
            }
        </style>
    
        """,
        unsafe_allow_html=True,
    )

    if "messages" not in st.session_state:
        st.session_state.messages = []
    
    if prompt := st.chat_input(placeholder="Your Instruction"):
        with st.chat_message("user"):
            st.write(prompt)
        st.session_state.messages.append({"role": "user", "content": prompt})
    
        with st.chat_message("assistant"):
            with st.spinner("Thinking..."):
                try:
                    stream = generate_response(prompt)
                    response = st.write_stream(stream)
                except Exception as e:
                    response = f"Caught Exception: {repr(e)}. Please contact the administrator to restart this space."
                    st.write(response)
                    raise(e)
                st.session_state.messages.append({"role": "assistant", "content": response})