Spaces:
Running
Running
File size: 8,026 Bytes
14b7942 e531eef 14b7942 e531eef b13e78c e531eef 5fcb1be e531eef eefb8e0 e531eef 5fcb1be e531eef f1dc901 e531eef b13e78c f1dc901 e531eef aee1475 e531eef aee1475 e531eef 67da2ee e531eef 67da2ee e531eef 67da2ee e531eef 67da2ee e531eef 67da2ee e531eef 67da2ee e531eef 67da2ee e531eef 67da2ee e531eef aee1475 e531eef aee1475 e531eef aee1475 e531eef 67da2ee e531eef 16b9f5c e531eef 16b9f5c 44c866a 16b9f5c e531eef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
import base64
import numpy as np
import streamlit as st
import streamlit.components.v1 as components
from streamlit_mic_recorder import mic_recorder
from utils import load_model, generate_response, bytes_to_array, start_server
def home_page():
## Set up home page Title
col1, col2 = st.columns([1, 4])
custom_html = """
<div class="banner">
<img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRhB2e_AhOe11wKxnnwOmOVg9E7J1MBgiTeYzzFAESwcCP5IbBAc2X8BwGChMfJzwqtVg&usqp=CAU" alt="Banner Image">
</div>
<style>
.banner {
width: 100%;
height: 200px;
overflow: visible;
}
.banner img {
width: 100%;
object-fit: cover;
}
</style>
"""
with col1:
components.html(custom_html)
with col2:
st.write("# Welcome to MERaLiON - AudioLLMs 🤖")
## Set up home page other information
st.markdown('')
def audio_llm():
with st.sidebar:
st.divider()
st.markdown("""<div class="sidebar-intro">
<p><strong>Purpose</strong>: Complex Audio Understanding</p>
<p><strong>Name</strong>: MERaLiON-AudioLLM-v1</p>
<p><strong>Version</strong>: Dec. 20, 2024</p>
</div>""", unsafe_allow_html=True)
if st.sidebar.button('Clear History'):
st.session_state.update(messages=[],
on_upload=False,
on_record=False,
on_select=False,
audio_array=np.array([]))
if "server" not in st.session_state:
st.session_state.server = start_server()
if "client" not in st.session_state or 'model_name' not in st.session_state:
st.session_state.client, st.session_state.model_name = load_model()
if "audio_array" not in st.session_state:
st.session_state.audio_base64 = ''
st.session_state.audio_array = np.array([])
if "default_instruction" not in st.session_state:
st.session_state.default_instruction = ""
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("**Record Audio:**")
recording = mic_recorder(
format="wav",
use_container_width=True,
callback=lambda: st.session_state.update(on_record=True, messages=[]),
key='record')
if recording and st.session_state.on_record:
audio_bytes = recording["bytes"]
st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
st.session_state.audio_array = bytes_to_array(audio_bytes)
with col2:
st.markdown("**Upload Audio:**")
uploaded_file = st.file_uploader(
label="**Upload Audio:**",
label_visibility="collapsed",
type=['wav', 'mp3'],
on_change=lambda: st.session_state.update(on_upload=True, messages=[]),
key='upload'
)
if uploaded_file and st.session_state.on_upload:
audio_bytes = uploaded_file.read()
st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
st.session_state.audio_array = bytes_to_array(audio_bytes)
with col3:
audio_samples_w_instruct = {
'1_ASR_IMDA_PART1_ASR_v2_141' : "- Turn the spoken language into a text format.\n\n- Please translate the content into Chinese.",
'2_ASR_IMDA_PART1_ASR_v2_2258': "- Turn the spoken language into a text format.\n\n- Please translate the content into Chinese.",
'3_ASR_IMDA_PART1_ASR_v2_2265': "- Turn the spoken language into a text format.",
'4_ASR_IMDA_PART2_ASR_v2_999' : "- Translate the spoken words into text format.",
'5_ASR_IMDA_PART2_ASR_v2_2241': "- Translate the spoken words into text format.",
'6_ASR_IMDA_PART2_ASR_v2_3409': "- Translate the spoken words into text format.",
'7_ASR_IMDA_PART3_30_ASR_v2_2269': "- Need this talk written down, please.",
'8_ASR_IMDA_PART3_30_ASR_v2_1698': "- Need this talk written down, please.",
'9_ASR_IMDA_PART3_30_ASR_v2_2474': "- Need this talk written down, please.",
'10_ASR_IMDA_PART4_30_ASR_v2_1527': "- Write out the dialogue as text.",
'11_ASR_IMDA_PART4_30_ASR_v2_3771': "- Write out the dialogue as text.",
'12_ASR_IMDA_PART4_30_ASR_v2_103' : "- Write out the dialogue as text.",
'13_ASR_IMDA_PART5_30_ASR_v2_1446': "- Translate this vocal recording into a textual format.",
'14_ASR_IMDA_PART5_30_ASR_v2_2281': "- Translate this vocal recording into a textual format.",
'15_ASR_IMDA_PART5_30_ASR_v2_4388': "- Translate this vocal recording into a textual format.",
'16_ASR_IMDA_PART6_30_ASR_v2_576': "- Record the spoken word in text form.",
'17_ASR_IMDA_PART6_30_ASR_v2_1413': "- Record the spoken word in text form.",
'18_ASR_IMDA_PART6_30_ASR_v2_2834': "- Record the spoken word in text form.",
'19_ASR_AIShell_zh_ASR_v2_5044': "- Transform the oral presentation into a text document.",
'20_ASR_LIBRISPEECH_CLEAN_ASR_V2_833': "- Please provide a written transcription of the speech."
}
audio_sample_names = [audio_sample_name for audio_sample_name in audio_samples_w_instruct.keys()]
st.markdown("**Select Audio:**")
sample_name = st.selectbox(
label="**Select Audio:**",
label_visibility="collapsed",
options=audio_sample_names,
index=None,
placeholder="Select an audio sample:",
on_change=lambda: st.session_state.update(on_select=True, messages=[]),
key='select')
if sample_name and st.session_state.on_select:
audio_bytes = open(f"audio_samples/{sample_name}.wav", "rb").read()
st.session_state.default_instruction = audio_samples_w_instruct[sample_name]
st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
st.session_state.audio_array = bytes_to_array(audio_bytes)
st.audio(st.session_state.audio_array, format="audio/wav", sample_rate=16000)
st.session_state.update(on_upload=False, on_record=False, on_select=False)
st.markdown("**Model Configuration:**")
col4, col5, _ = st.columns(3)
with col4:
st.slider(label='Temperature', min_value=0.0, max_value=2.0, value=0.7, key='temperature')
with col5:
st.slider(label='Top P', min_value=0.0, max_value=1.0, value=1.0, key='top_p')
st.markdown("**Example Instruction:**")
st.write(st.session_state.default_instruction)
st.markdown(
"""
<style>
.st-emotion-cache-1c7y2kd {
flex-direction: row-reverse;
text-align: right;
}
</style>
""",
unsafe_allow_html=True,
)
if "messages" not in st.session_state:
st.session_state.messages = []
if prompt := st.chat_input(placeholder="Your Instruction"):
with st.chat_message("user"):
st.write(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
try:
stream = generate_response(prompt)
response = st.write_stream(stream)
except Exception as e:
response = f"Caught Exception: {repr(e)}. Please contact the administrator to restart this space."
st.write(response)
raise(e)
st.session_state.messages.append({"role": "assistant", "content": response})
|