Spaces:
Running
Running
File size: 4,992 Bytes
b0e6781 4c1d731 2e7bc8b b0e6781 5a03d31 b0e6781 11356c3 2e7bc8b b0e6781 f3cadf1 11356c3 f3cadf1 4c1d731 b0e6781 11356c3 b0e6781 2e7bc8b b0e6781 2e7bc8b b0e6781 f3cadf1 b0e6781 f3cadf1 2e7bc8b 4c1d731 2e7bc8b 4c1d731 2e7bc8b b0e6781 4c1d731 b0e6781 2e7bc8b 4c1d731 b0e6781 4c1d731 b0e6781 4c1d731 b0e6781 2e7bc8b 4c1d731 b0e6781 2e7bc8b b0e6781 f3cadf1 b0e6781 4c1d731 b0e6781 11356c3 b0e6781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import streamlit as st
import datasets
import numpy as np
import html
def show_examples(category_name, dataset_name, model_lists, display_model_names):
st.divider()
sample_folder = f"./examples/{category_name}/{dataset_name}"
dataset = datasets.load_from_disk(sample_folder)
for index in range(len(dataset)):
with st.container():
st.markdown(f'##### Example-{index+1}')
col1, col2 = st.columns([0.3, 0.7], vertical_alignment="center")
# with col1:
st.audio(f'{sample_folder}/sample_{index}.wav', format="audio/wav")
if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
choices = dataset[index]['other_attributes']['choices']
if isinstance(choices, str):
choices_text = choices
elif isinstance(choices, list):
choices_text = ' '.join(i for i in choices)
question_text = f"""{dataset[index]['instruction']['text']} {choices_text}"""
else:
question_text = f"""{dataset[index]['instruction']['text']}"""
question_text = html.escape(question_text)
# st.divider()
with st.container():
custom_css = """
<style>
.my-container-table, p.my-container-text {
background-color: #fcf8dc;
padding: 10px;
border-radius: 5px;
font-size: 13px;
# height: 50px;
word-wrap: break-word
}
</style>
"""
st.markdown(custom_css, unsafe_allow_html=True)
model_lists.sort()
s = f"""<tr>
<td><b>REFERENCE</td>
<td><b>{html.escape(question_text.replace('(A)', '<br>(A)').replace('(B)', '<br>(B)').replace('(C)', '<br>(C)'))}
</td>
<td><b>{html.escape(dataset[index]['answer']['text'])}
</td>
</tr>
"""
if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
for model in model_lists:
try:
model_prediction = dataset[index][model]['model_prediction']
model_prediction = model_prediction.replace('<','').replace('>','').replace('\n','(newline)').replace('*','')
s += f"""<tr>
<td>{display_model_names[model]}</td>
<td>
{dataset[index][model]['text'].replace('Choices:', '<br>Choices:').replace('(A)', '<br>(A)').replace('(B)', '<br>(B)').replace('(C)', '<br>(C)')
}
</td>
<td>{html.escape(model_prediction)}</td>
</tr>"""
except:
print(f"{model} is not in {dataset_name}")
continue
else:
for model in model_lists:
print(dataset[index][model]['model_prediction'])
try:
model_prediction = dataset[index][model]['model_prediction']
model_prediction = model_prediction.replace('<','').replace('>','').replace('\n','(newline)').replace('*','')
s += f"""<tr>
<td>{display_model_names[model]}</td>
<td>{html.escape(dataset[index][model]['text'])}</td>
<td>{html.escape(model_prediction)}</td>
</tr>"""
except:
print(f"{model} is not in {dataset_name}")
continue
body_details = f"""<table style="table-layout: fixed; width:100%">
<thead>
<tr style="text-align: center;">
<th style="width:20%">MODEL</th>
<th style="width:30%">QUESTION</th>
<th style="width:50%">MODEL PREDICTION</th>
</tr>
{s}
</thead>
</table>"""
st.markdown(f"""<div class="my-container-table">
{body_details}
</div>""", unsafe_allow_html=True)
st.text("")
st.divider()
|