File size: 4,992 Bytes
b0e6781
 
 
 
4c1d731
 
 
2e7bc8b
b0e6781
 
5a03d31
b0e6781
 
 
11356c3
2e7bc8b
b0e6781
 
f3cadf1
 
11356c3
f3cadf1
 
 
 
 
 
 
 
 
 
 
4c1d731
 
b0e6781
11356c3
b0e6781
 
 
2e7bc8b
 
b0e6781
 
2e7bc8b
b0e6781
f3cadf1
b0e6781
 
 
 
 
 
f3cadf1
 
2e7bc8b
4c1d731
2e7bc8b
4c1d731
2e7bc8b
 
 
b0e6781
 
 
4c1d731
 
 
 
b0e6781
2e7bc8b
 
 
 
 
4c1d731
b0e6781
 
 
 
 
 
4c1d731
 
 
b0e6781
4c1d731
 
 
 
b0e6781
2e7bc8b
4c1d731
 
b0e6781
 
 
 
2e7bc8b
b0e6781
f3cadf1
b0e6781
 
 
4c1d731
 
b0e6781
 
 
 
 
 
 
 
 
 
11356c3
 
b0e6781
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import streamlit as st
import datasets
import numpy as np

import html


def show_examples(category_name, dataset_name, model_lists, display_model_names):
    st.divider()
    sample_folder = f"./examples/{category_name}/{dataset_name}"
    
    dataset = datasets.load_from_disk(sample_folder)

    for index in range(len(dataset)):
        with st.container():
            st.markdown(f'##### Example-{index+1}')
            col1, col2 = st.columns([0.3, 0.7], vertical_alignment="center")

            # with col1:
            st.audio(f'{sample_folder}/sample_{index}.wav', format="audio/wav")
                        
            if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
                
                choices = dataset[index]['other_attributes']['choices'] 
                if isinstance(choices, str):
                    choices_text = choices
                elif isinstance(choices, list):
                    choices_text = ' '.join(i for i in choices)
                
                question_text = f"""{dataset[index]['instruction']['text']} {choices_text}"""
            else:
                question_text = f"""{dataset[index]['instruction']['text']}"""

            question_text = html.escape(question_text)
            
            # st.divider()
            with st.container():
                custom_css = """
                            <style>
                            .my-container-table, p.my-container-text {
                            background-color: #fcf8dc;
                            padding: 10px;
                            border-radius: 5px;
                            font-size: 13px;
                            # height: 50px;
                            word-wrap: break-word
                            }
                            </style>
                            """
                st.markdown(custom_css, unsafe_allow_html=True)

                model_lists.sort()

                s = f"""<tr>
                       <td><b>REFERENCE</td>
                       <td><b>{html.escape(question_text.replace('(A)', '<br>(A)').replace('(B)', '<br>(B)').replace('(C)', '<br>(C)'))}
                       </td>
                       <td><b>{html.escape(dataset[index]['answer']['text'])}
                       </td>
                </tr>
                """
                if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
                    for model in model_lists:
                        try:

                            model_prediction = dataset[index][model]['model_prediction']
                            model_prediction = model_prediction.replace('<','').replace('>','').replace('\n','(newline)').replace('*','')

                            s += f"""<tr>
                                <td>{display_model_names[model]}</td>
                                <td>
                                    {dataset[index][model]['text'].replace('Choices:', '<br>Choices:').replace('(A)', '<br>(A)').replace('(B)', '<br>(B)').replace('(C)', '<br>(C)') 
                                     }
                                    </td>
                                <td>{html.escape(model_prediction)}</td>
                            </tr>"""
                        except:
                            print(f"{model} is not in {dataset_name}")
                            continue
                else:
                    for model in model_lists:

                        print(dataset[index][model]['model_prediction'])

                        try:

                            model_prediction = dataset[index][model]['model_prediction']
                            model_prediction = model_prediction.replace('<','').replace('>','').replace('\n','(newline)').replace('*','')

                            s += f"""<tr>
                                <td>{display_model_names[model]}</td>
                                <td>{html.escape(dataset[index][model]['text'])}</td>
                                <td>{html.escape(model_prediction)}</td>
                            </tr>"""
                        except:
                            print(f"{model} is not in {dataset_name}")
                            continue

                
                body_details = f"""<table style="table-layout: fixed; width:100%">
                <thead>
                    <tr style="text-align: center;">
                        <th style="width:20%">MODEL</th>
                        <th style="width:30%">QUESTION</th>
                        <th style="width:50%">MODEL PREDICTION</th>
                    </tr>
                {s}
                </thead>
                </table>"""
                
                st.markdown(f"""<div class="my-container-table">
                                {body_details}
                                </div>""", unsafe_allow_html=True)
            
                st.text("")
        
        st.divider()