Spaces:
Runtime error
Runtime error
File size: 64,635 Bytes
1547a56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 |
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------
import logging
from ast import literal_eval
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from fairseq import utils
from fairseq.models import (
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
register_model,
register_model_architecture,
)
from .modules.text_encoder_prenet import TextEncoderPrenet
from .modules.text_decoder_prenet import TextDecoderPrenet
from .modules.text_decoder_postnet import TextDecoderPostnet
from .modules.speech_encoder_prenet import SpeechEncoderPrenet
from .modules.speech_encoder_postnet import SpeechEncoderPostnet
from .modules.speech_decoder_prenet import SpeechDecoderPrenet
from .modules.speech_decoder_postnet import SpeechDecoderPostnet
from .modules.speaker_decoder_postnet import SpeakerDecoderPostnet
from .modules.encoder import TransformerEncoder
from .modules.decoder import TransformerDecoder
from fairseq.modules.transformer_sentence_encoder import init_bert_params
from fairseq.models.transformer import Embedding
from fairseq.modules import (
GumbelVectorQuantizer,
)
from torch import Tensor
logger = logging.getLogger(__name__)
DEFAULT_MAX_TEXT_POSITIONS = 450
DEFAULT_MAX_SPEECH_POSITIONS = 4000
@register_model("artst_transformer")
class ArTSTTransformerModel(FairseqEncoderDecoderModel):
"""Adapted Transformer model (https://arxiv.org/abs/1706.03762) for
speech-to-text tasks. The Transformer encoder/decoder remains the same.
A trainable input subsampler is prepended to the Transformer encoder to
project inputs into the encoder dimension as well as downsample input
sequence for computational efficiency."""
def __init__(
self,
args,
encoder, decoder,
text_encoder_prenet, speech_encoder_prenet,
text_decoder_prenet, speech_decoder_prenet,
text_decoder_postnet, speech_decoder_postnet,
speaker_decoder_postnet, speech_encoder_postnet,
):
super().__init__(encoder, decoder)
self.encoder = encoder
self.decoder = decoder
self.text_encoder_prenet = text_encoder_prenet
self.speech_encoder_prenet = speech_encoder_prenet
self.text_decoder_prenet = text_decoder_prenet
self.speech_decoder_prenet = speech_decoder_prenet
self.text_decoder_postnet = text_decoder_postnet
self.speech_decoder_postnet = speech_decoder_postnet
self.speaker_decoder_postnet = speaker_decoder_postnet
self.hubert_layer = speech_encoder_postnet
self.reduction_factor = args.reduction_factor
self.spk_embed_dim = args.spk_embed_dim
# define projection layer
self.spk_embed_integration_type = args.spk_embed_integration_type
if self.spk_embed_dim is not None and self.spk_embed_integration_type != 'pre':
if self.spk_embed_integration_type == "add":
self.projection = torch.nn.Linear(self.spk_embed_dim, args.decoder_embed_dim)
else:
self.projection = torch.nn.Linear(
args.decoder_embed_dim + self.spk_embed_dim, args.decoder_embed_dim
)
# Hawau: here we can add language embedding integration
self.use_codebook = args.use_codebook
self.codebook_prob = getattr(args, "codebook_prob", 0.5) # args.codebook_prob
if self.use_codebook:
vq_dim = args.latent_dim if args.latent_dim > 0 else args.encoder_embed_dim
self.quantizer = GumbelVectorQuantizer(
dim=args.encoder_embed_dim,
num_vars=args.latent_vars,
temp=args.latent_temp,
groups=args.latent_groups,
combine_groups=False,
vq_dim=vq_dim,
time_first=True,
weight_proj_depth=args.quantizer_depth,
weight_proj_factor=args.quantizer_factor,
)
self.num_updates = 0
# # Follow BERT's random weight initialization (for BART)
if args.bert_init:
self.apply(init_bert_params)
self.args = args
self.prune_modules(args.modules_filter)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# Transformer
parser.add_argument(
"--activation-fn",
type=str,
choices=utils.get_available_activation_fns(),
help="activation function to use",
)
parser.add_argument(
"--dropout", type=float, metavar="D", help="dropout probability"
)
parser.add_argument(
"--attention-dropout",
type=float,
metavar="D",
help="dropout probability for attention weights",
)
parser.add_argument(
"--activation-dropout",
"--relu-dropout",
type=float,
metavar="D",
help="dropout probability after activation in FFN.",
)
parser.add_argument(
"--encoder-embed-dim",
type=int,
metavar="N",
help="encoder embedding dimension",
)
parser.add_argument(
"--encoder-ffn-embed-dim",
type=int,
metavar="N",
help="encoder embedding dimension for FFN",
)
parser.add_argument(
"--encoder-layers", type=int, metavar="N", help="num encoder layers"
)
parser.add_argument(
"--encoder-attention-heads",
type=int,
metavar="N",
help="num encoder attention heads",
)
parser.add_argument(
"--encoder-normalize-before",
action="store_true",
help="apply layernorm before each encoder block",
)
parser.add_argument(
"--decoder-normalize-before",
action="store_true",
help="apply layernorm before each decoder block",
)
parser.add_argument(
"--decoder-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension",
)
parser.add_argument(
"--decoder-ffn-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension for FFN",
)
parser.add_argument(
"--decoder-layers", type=int, metavar="N", help="num decoder layers"
)
parser.add_argument(
"--decoder-attention-heads",
type=int,
metavar="N",
help="num decoder attention heads",
)
parser.add_argument(
"--reduction-factor",
type=int,
help="reduction factor for decoder",
)
parser.add_argument(
"--spk-embed-dim",
type=int,
help="speaker embedding dimension",
)
parser.add_argument(
"--layernorm-embedding",
action="store_true",
help="add layernorm to embedding",
)
parser.add_argument(
"--load-pretrained-encoder-from",
type=str,
metavar="STR",
help="model to take encoder weights from (for initialization)",
)
parser.add_argument(
'--freeze-encoder-updates',
type=int,
help='number of steps to freeze encoder before finetune'
)
parser.add_argument(
'--freeze-decoder-updates',
type=int,
help='number of steps to freeze decoder before finetune'
)
parser.add_argument(
'--no-freeze-encoder-layer',
type=str,
help='which encoder layer not freeze during finetune'
)
parser.add_argument(
"--share-input-output-embed",
action="store_true",
help="share decoder input and output embeddings",
)
parser.add_argument(
"--share-ctc-embed",
action="store_true",
help="share ctc embed and decoder embed",
)
parser.add_argument(
"--encoder-sliding-window-attn",
default=None,
type=int,
help="If not None but a even number, set sliding window attention to encoder's attn_mask, e.g., 4, 10, and 20",
)
# Convolutional subsampler
parser.add_argument(
"--encoder-speech-prenet",
default="conv",
type=str,
choices=["conv", "linear"],
help="The type of encoder speech prenet, e.g., conv or linear."
)
parser.add_argument(
"--conv-kernel-sizes",
default="5,5",
type=str,
help="The layer of convolution of encoder speech prenet."
)
parser.add_argument(
"--conv-channels",
default=1024,
type=int,
help="The channels of encoder speech prenet."
)
parser.add_argument(
"--subsample-stride",
default="2,2",
type=str,
help="The subsample stride for conv1dsubsample."
)
parser.add_argument(
"--spk-embed-integration-type",
type=str,
choices=["pre", "add"],
help="speaker embedding integration type"
)
parser.add_argument(
"--dprenet-dropout-rate",
default=0.5,
type=float,
help="The dropout rate of decoder speech prenet."
)
## SE
parser.add_argument(
"--se-predict",
default=None,
choices=["masking", "target", "delta"],
help="If set, source speech inputs decoder to predict the masking/target/delta of corresponding inputs."
+ "masking is [0, 1], target is predicted output, delta is difference between inputs and outputs",
)
parser.add_argument(
"--se-decoder-input",
type=str,
default="previous_target",
choices=["previous_target", "source"],
)
## SID
parser.add_argument(
"--modules-filter",
default=None,
type=str,
help="Remove unused modules for, e.g., SID.",
)
parser.add_argument(
"--sid-pad-prenet",
action="store_true",
help="If set, the size of text dictionary is as small as for <pad> token.",
)
parser.add_argument(
"--encoder-attn-branch",
type=str,
default="identity,full",
help="encoder attention branch sliding window, e.g., 'identity,0,2,4,full'",
)
parser.add_argument(
"--encoder-block-branch",
type=str,
help="average the output of encoder, e.g., '4,5,6'",
)
parser.add_argument(
"--sid-encoder-cls",
default=None,
choices=["encoder"],
help="If set, add cls vector to the encoder input, e.g., constant vector.",
)
parser.add_argument(
"--sid-shuffle-encoder-input",
action="store_true",
help="If set, shuffle encoder input in time.",
)
parser.add_argument(
"--sid-decoder-speaker",
action="store_true",
help="If set, apply speaker decoder as transformer decoder.",
)
parser.add_argument(
"--sid-decoder-attn-dim",
default=128,
type=int,
help="Attention dimension in attensive statistics pooling of speaker decoder.",
)
parser.add_argument(
"--sid-t5-postnet",
action="store_true",
help="If set, apply TextDecoderPostnet as speaker classification.",
)
parser.add_argument(
"--sid-embed-dim",
default=128,
type=int,
help="Embedding dimension in speaker postnet for speaker identification if embed postnet.",
)
parser.add_argument(
"--sid-pooling-layer",
default="decoder",
type=str,
choices=["decoder-las", "decoder", "encoder", "encoder-cls", "encoder-speaker"],
help="The output of decoder or encoder uses as SID pooling layer over temporal dimension.",
)
parser.add_argument(
"--sid-no-pooling-bn",
action="store_true",
help="If set, not attention batchnorm.",
)
parser.add_argument(
"--sid-no-embed-postnet",
action="store_true",
help="If set, no layer between decoder output and classification layer.",
)
parser.add_argument(
"--sid-normalize-postnet",
action="store_true",
help="If set, normalize input and weight in postnet/classifier.",
)
parser.add_argument(
"--sid-softmax-type",
default="softmax",
choices=["softmax", "amsoftmax", "aamsoftmax"],
help="If using amsoftmax or aamsoftmax, the target should be given.",
)
parser.add_argument(
"--softmax-scale",
default=1.0,
type=float,
help="Scale for AMSoftmax or AAMSoftmax.",
)
parser.add_argument(
"--softmax-margin",
default=0.0,
type=float,
help="Margin for AMSoftmax or AAMSoftmax.",
)
parser.add_argument(
"--softmax-easy-margin",
action="store_true",
help="Enable easy margin for AAMSoftmax.",
)
parser.add_argument(
"--encoder-layerdrop",
type=float,
metavar="D",
help="LayerDrop probability for encoder",
)
parser.add_argument(
"--decoder-layerdrop",
type=float,
metavar="D",
help="LayerDrop probability for decoder",
)
## Hubert
parser.add_argument(
'--feature-grad-mult',
type=float,
help='multiply feature extractor var grads by this'
)
parser.add_argument(
'--logit-temp',
type=float,
help='temperature to divide logits by'
)
parser.add_argument(
'--final-dim',
type=int,
help="project final representations and targets to this many "
"dimensions. set to encoder_embed_dim is <= 0"
)
# mask
parser.add_argument(
'--hubert-mask-length',
type=int,
help='mask length'
)
parser.add_argument(
'--mask-prob',
type=float,
help='probability of replacing a token with mask'
)
parser.add_argument(
"--mask-selection",
choices=["static", "uniform", "normal", "poisson"],
help="how to choose mask length",
)
parser.add_argument(
'--mask-other',
type=float,
help="secondary mask argument "
"(used for more complex distributions), "
"see help in compute_mask_indices"
)
parser.add_argument(
'--mask-min-space',
type=int,
help='min space between spans (if no overlap is enabled)'
)
# channel masking
parser.add_argument(
'--mask-channel-length',
type=int,
help='length of the mask for features (channels)'
)
parser.add_argument(
'--mask-channel-prob',
type=float,
help="probability of replacing a feature with 0"
)
parser.add_argument(
"--mask-channel-selection",
choices=["static", "uniform", "normal", "poisson"],
help="how to choose mask length for channel masking",
)
parser.add_argument(
'--mask-channel-other',
type=float,
help="secondary mask argument "
"(used for more complex distributions), "
"see help in compute_mask_indices"
)
parser.add_argument(
'--mask-channel-min-space',
type=int,
help='min space between spans (if no overlap is enabled)'
)
# abs positional embeddings
parser.add_argument(
'--conv-pos',
type=int,
help='number of filters for convolutional positional embeddings'
)
parser.add_argument(
'--conv-pos-groups',
type=int,
help='number of groups for convolutional positional embedding'
)
# codebook related
parser.add_argument(
"--use-codebook",
action="store_true",
help="whether to use codebook",
)
parser.add_argument(
"--codebook-prob",
type=float,
help="probability to use codebook",
)
parser.add_argument(
"--latent-vars",
type=int,
help="number of latent variables V in each group of the codebook",
)
parser.add_argument(
"--latent-groups",
type=int,
help="number of groups G of latent variables in the codebook",
)
parser.add_argument(
"--latent-dim",
type=int,
help="if > 0, uses this dimensionality for latent variables. "
"otherwise uses final_dim / latent_groups",
)
parser.add_argument(
"--latent-temp",
type=literal_eval,
help="temperature for latent variable sampling. "
"can be tuple of 3 values (start, end, decay)",
)
parser.add_argument(
"--quantizer-depth",
type=int,
help="number of quantizer layers",
)
parser.add_argument(
"--quantizer-factor",
type=int,
help="number of quantizer layers",
)
parser.add_argument(
"--get-code-distribution",
action='store_true',
help="whether to get the code distribution (for test)",
)
# relative pos enc
parser.add_argument(
"--relative-position-embedding",
action='store_true',
help="whether to use relative position embedding",
)
parser.add_argument(
"--num-buckets",
type=int,
default=320,
help="num of buckets for relative position embedding",
)
parser.add_argument(
"--max-distance",
type=int,
default=1280,
help="max distance for relative position embedding",
)
parser.add_argument(
"--encoder-max-relative-position",
type=int,
help="max distance for relative position embedding in encoder",
)
parser.add_argument(
"--decoder-max-relative-position",
type=int,
help="max distance for relative position embedding in decoder",
)
# hubert feature extractor
parser.add_argument(
"--conv-feature-layers",
type=str,
help= "string describing convolutional feature extraction "
"layers in form of a python list that contains "
"[(dim, kernel_size, stride), ...]",
)
parser.add_argument(
"--conv-bias",
action='store_true',
help="include bias in conv encoder",
)
parser.add_argument(
"--extractor-mode",
choices=["default", "layer_norm"],
help="mode for feature extractor. default has a single group "
"norm with d groups in the first conv block, whereas layer_norm "
"has layer norms in every block (meant to use with normalize=True)"
)
# others
parser.add_argument(
"--bert-init",
action='store_true',
help="initilize as bert",
)
parser.add_argument(
"--unb-enc-layer",
type=int,
default=-1,
help="which layer's output is used as the input of decoder",
)
# Encoder, Decoder
@classmethod
def build_encoder(cls, args, dictionary=None, embed_tokens=None):
return TransformerEncoder(args, dictionary, embed_tokens)
@classmethod
def build_decoder(cls, args):
return TransformerDecoder(args)
# Encoder Prenet
@classmethod
def build_text_encoder_prenet(cls, embed_tokens, args):
return TextEncoderPrenet(embed_tokens, args)
@classmethod
def build_speech_encoder_prenet(cls, args):
return SpeechEncoderPrenet(args)
# Decoder Prenet
@classmethod
def build_text_decoder_prenet(cls, embed_tokens, args):
return TextDecoderPrenet(embed_tokens, args)
@classmethod
def build_speech_decoder_prenet(cls, odim, args):
return SpeechDecoderPrenet(odim, args)
# Decoder Postnet
@classmethod
def build_text_decoder_postnet(cls, embed_tokens, dictionary, args):
return TextDecoderPostnet(embed_tokens, dictionary, args)
@classmethod
def build_speaker_decoder_postnet(cls, embed_dim, class_num, args):
return SpeakerDecoderPostnet(embed_dim, class_num, args)
@classmethod
def build_speech_decoder_postnet(cls, odim, args):
return SpeechDecoderPostnet(odim, args)
@classmethod
def build_speech_encoder_postnet(cls, dictionaries, args):
return SpeechEncoderPostnet(dictionaries, args)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_architecture(args)
def build_embedding(dictionary, embed_dim, max_num_embeddings=None):
num_embeddings = len(dictionary)
if max_num_embeddings is not None and isinstance(max_num_embeddings, int):
num_embeddings = min(num_embeddings, max_num_embeddings)
padding_idx = dictionary.pad()
return Embedding(num_embeddings, embed_dim, padding_idx)
if hasattr(args, "sid_pad_prenet") and args.sid_pad_prenet:
max_num_embeddings = 3 # <pad> at index 2
else:
max_num_embeddings = None
text_decoder_embed_tokens = build_embedding(
task.dicts["text"], args.decoder_embed_dim, max_num_embeddings
)
if args.share_input_output_embed:
text_encoder_embed_tokens = text_decoder_embed_tokens
else:
text_encoder_embed_tokens = build_embedding(
task.dicts["text"], args.encoder_embed_dim
)
speech_odim = args.speech_odim
if "text" in task.dicts:
encoder = cls.build_encoder(args, task.dicts["text"], text_encoder_embed_tokens)
else:
encoder = cls.build_encoder(args)
decoder = cls.build_decoder(args)
text_encoder_prenet = cls.build_text_encoder_prenet(text_encoder_embed_tokens, args)
speech_encoder_prenet = cls.build_speech_encoder_prenet(args)
text_decoder_prenet = cls.build_text_decoder_prenet(text_decoder_embed_tokens, args)
if getattr(args, "sid_pooling_layer", None) == "decoder-las":
speech_decoder_prenet = cls.build_speech_encoder_prenet(args)
else:
speech_decoder_prenet = cls.build_speech_decoder_prenet(speech_odim, args)
text_decoder_postnet = cls.build_text_decoder_postnet(text_decoder_embed_tokens, task.dicts['text'], args)
speech_decoder_postnet = cls.build_speech_decoder_postnet(speech_odim, args)
if getattr(args, "sid_t5_postnet", False):
speaker_decoder_postnet = None
else:
if task.t5_task == "s2c":
speaker_decoder_postnet = cls.build_speaker_decoder_postnet(args.sid_embed_dim, len(task.dicts['text']), args)
else:
speaker_decoder_postnet = None
if "hubert" in task.dicts:
speech_encoder_postnet = cls.build_speech_encoder_postnet(task.dicts['hubert'], args)
else:
speech_encoder_postnet = None
return cls(
args,
encoder, decoder,
text_encoder_prenet, speech_encoder_prenet,
text_decoder_prenet, speech_decoder_prenet,
text_decoder_postnet, speech_decoder_postnet,
speaker_decoder_postnet, speech_encoder_postnet,
)
def get_normalized_probs(
self,
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
log_probs: bool,
sample: Optional[Dict[str, Tensor]] = None,
):
# net_output['encoder_out'] is a (B, T, D) tensor
lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample)
lprobs.batch_first = True
return lprobs
def get_normalized_probs_for_ctc(self, net_output, log_probs):
"""Get normalized probabilities (or log probs) from a net's output."""
logits = net_output["encoder_out_for_ctc"][0]
if log_probs:
return utils.log_softmax(logits.float(), dim=-1)
else:
return utils.softmax(logits.float(), dim=-1)
def get_logits(self, net_output, is_masked=True):
if is_masked:
logits_list = net_output["logit_m_list"]
else:
logits_list = net_output["logit_u_list"]
logits_list = [x.float() for x in logits_list if x is not None]
return logits_list
def get_targets(self, sample, net_output, is_masked=True):
if "logit_m_list" in net_output:
logits_list = self.get_logits(net_output, is_masked)
targets_list = [
x.new_zeros(x.size(0), dtype=torch.long) for x in logits_list
]
return targets_list
else:
return sample["target"]
def get_extra_losses(self, net_output):
extra_losses = []
names = []
if "features_pen" in net_output:
extra_losses.append(net_output["features_pen"])
names.append("features_pen")
if "prob_perplexity" in net_output:
extra_losses.append(
(net_output["num_vars"] - net_output["prob_perplexity"])
/ net_output["num_vars"]
)
names.append("prob_perplexity")
return extra_losses, names
def forward(self, source=None, src_tokens=None, src_lengths=None, prev_output_tokens=None, tgt_lengths=None, spkembs=None, target_list=None, task_name=None, padding_mask=None, only_hubert=False, only_ctc=False, feature_only=False, tgt_enc_layer=None, mask=True):
"""
The forward method inherited from the base class has a **kwargs
argument in its input, which is not supported in torchscript. This
method overwrites the forward method definition without **kwargs.
"""
assert source is not None or src_tokens is not None
# padding_mask is not none only when input is waveform
if source is None and padding_mask is None and not feature_only:
input_type = 'text'
else:
input_type = 'speech'
if prev_output_tokens is not None and len(prev_output_tokens.size()) == 2:
output_type = 'text'
codebook_out = {}
else:
output_type = 'speech'
if task_name is not None and task_name == "s2c":
if target_list is not None and target_list.size(1) == 1 and not getattr(self.args, "sid_t5_postnet", False):
sid_target = F.one_hot(target_list.squeeze(1), num_classes=self.speaker_decoder_postnet.class_num)
else:
sid_target = None
target_list = None
# Encoder Prenet
if input_type == 'text':
encoder_input, encoder_padding_mask = self.text_encoder_prenet(src_tokens)
else:
if target_list is not None:
encoder_input, encoder_padding_mask = self.speech_encoder_prenet(source, require_feat_pen=True, target_list=target_list, padding_mask=padding_mask, mask=mask)
encoder_input, features_pen, mask_indices, target_list = encoder_input
else:
encoder_input, encoder_padding_mask = self.speech_encoder_prenet(source, padding_mask=padding_mask, mask=self.training)
# shuffle a batch of inputs of encoder
if self.training and hasattr(self.args, "sid_shuffle_encoder_input") and getattr(self.args, "sid_shuffle_encoder_input", False):
shuffle_index = torch.randperm(encoder_padding_mask.size(1), device=encoder_padding_mask.device)
encoder_input = torch.index_select(encoder_input, 1, shuffle_index)
encoder_padding_mask = torch.index_select(encoder_padding_mask, 1, shuffle_index)
if getattr(self.args, "sid_encoder_cls", None) == "encoder":
prev_output_tokens = torch.zeros_like(prev_output_tokens)
encoder_input, encoder_padding_mask = self._integrate_with_speaker_cls(prev_output_tokens, encoder_input, encoder_padding_mask)
# Encoder: T x B x C
encoder_output = self.encoder(encoder_input, encoder_padding_mask, tgt_layer=tgt_enc_layer)
if task_name is not None and task_name == 'speech_pretrain' and feature_only:
return encoder_output["encoder_out"][0].transpose(0, 1)
if task_name is not None and task_name == 's2c':
if self.args.sid_pooling_layer == "encoder":
return self.speaker_decoder_postnet(encoder_output["encoder_out"][0].transpose(0, 1).mean(1), sid_target), None
elif self.args.sid_pooling_layer == "encoder-cls":
return self.speaker_decoder_postnet(encoder_output["encoder_out"][0].transpose(0, 1)[:,0], sid_target), None
elif self.args.sid_pooling_layer == "encoder-speaker" or getattr(self.args, "sid_decoder_speaker", False):
return self.speaker_decoder_postnet(encoder_output["encoder_out"][0].transpose(0, 1), sid_target), None
if target_list is not None:
hubert_results = self.hubert_layer(
encoder_output["encoder_out"][0].transpose(0, 1),
encoder_padding_mask,
mask_indices,
target_list
)
hubert_results['features_pen'] = features_pen
if "decoder_input" in encoder_output and encoder_output["decoder_input"][0] is not None:
# Change the encoder output to decoder input once set unb-enc-layer
encoder_output["encoder_out"] = encoder_output["decoder_input"]
if self.use_codebook:
q = self.quantizer(encoder_output["encoder_out"][0].transpose(0, 1))
# q["x"]: B x T x C
# Sample indexs according to the codebook prob
random_idx = torch.randperm(q["x"].size(1))[:int(q["x"].size(1) * self.codebook_prob)]
# Make weight for q
q_w = q["x"].new_zeros(q["x"].size(1))
q_w[random_idx] = 1.0
# Combine quantized codes and encoder output
encoder_output["encoder_out"][0] = (
q_w.view(-1, 1) * q["x"] + (- q_w + 1).view(-1, 1) * encoder_output["encoder_out"][0].transpose(0, 1)
).transpose(0, 1)
# encoder_output["encoder_out"][0] = q["x"].transpose(0, 1)
if output_type == 'speech':
hubert_results["prob_perplexity"] = q["prob_perplexity"]
hubert_results["code_perplexity"] = q["code_perplexity"]
hubert_results["num_vars"] = q["num_vars"]
hubert_results["temp"] = q["temp"]
elif output_type == 'text':
codebook_out["prob_perplexity"] = q["prob_perplexity"]
codebook_out["code_perplexity"] = q["code_perplexity"]
codebook_out["num_vars"] = q["num_vars"]
codebook_out["temp"] = q["temp"]
if only_hubert and target_list is not None:
return hubert_results, None
if only_ctc and task_name is not None and task_name == "s2t":
return None, encoder_output
elif not self.training and prev_output_tokens is None and task_name == "s2t" and task_name is not None:
return encoder_output
# Decoder Prenet
if output_type == 'text':
# _ is the incremental state
prev_output_tokens, tgt_mask, _ = self.text_decoder_prenet(prev_output_tokens)
if task_name is not None and task_name == 's2c':
prev_output_tokens = torch.zeros_like(prev_output_tokens)
else:
# integrate speaker embedding
if self.spk_embed_integration_type == "pre" and self.spk_embed_dim is not None:
# Decoder Prenet
prev_output_tokens, tgt_mask = self.speech_decoder_prenet(prev_output_tokens, tgt_lengths, spkembs)
else:
if self.spk_embed_dim is not None:
encoder_output["encoder_out"] = [self._integrate_with_spk_embed(
encoder_output["encoder_out"][0].transpose(0, 1), spkembs
).transpose(0, 1)]
prev_output_tokens, tgt_mask = self.speech_decoder_prenet(prev_output_tokens, tgt_lengths)
# BART Sequence Classification: cat <pad> + feature before decoder
if task_name is not None and task_name == 's2c' and self.args.sid_pooling_layer == "decoder-las":
decoder_feat_input, decoder_feat_mask = self.speech_decoder_prenet(src_tokens, src_lengths)
prev_output_tokens, tgt_mask = self._integrate_with_speaker_cls((prev_output_tokens, tgt_mask), decoder_feat_input, decoder_feat_mask, cls_first=False)
# SE predict masking to corresponding inputs and source speech replaces the prev_output_tokens as the input of decoder
if task_name is not None and task_name == "s2s" and getattr(self.args, "se_decoder_input", "previous_target") == "source":
prev_output_tokens, tgt_mask = self.speech_decoder_prenet(src_tokens, src_lengths)
# Decoder
decoder_output, extra = self.decoder(prev_output_tokens, tgt_mask, encoder_output,
full_context_alignment=getattr(self.args, "decoder_full_context_alignment", False),
alignment_layer=(-1 if target_list is None and output_type == 'speech' else None))
# Decoder Postnet
if task_name is not None and task_name == 's2c':
if not getattr(self.args, "sid_t5_postnet", False):
if self.args.sid_pooling_layer == "decoder":
return self.speaker_decoder_postnet(decoder_output.mean(1), sid_target), None
elif self.args.sid_pooling_layer == "decoder-las":
indices = (tgt_mask.eq(False).float().sum(1) - 1.0).type(torch.int64)
indices = indices.unsqueeze(1).unsqueeze(2).expand(-1, -1, decoder_output.size(2))
return self.speaker_decoder_postnet(decoder_output.gather(1, indices), sid_target), None
else:
return (self.text_decoder_postnet(decoder_output), None), encoder_output
# SE predict: masking, target, delta. Ensure reduction factor 1
if task_name is not None and task_name == 's2s' and getattr(self.args, "se_predict", None) is not None:
assert self.reduction_factor == 1, f"{self.reduction_factor} != 1"
before_outs, after_outs, logits = self.speech_decoder_postnet(decoder_output)
se_predict = getattr(self.args, "se_predict")
if se_predict == "masking":
before_outs = torch.sigmoid(before_outs) * src_tokens
after_outs = torch.sigmoid(after_outs) * src_tokens
return before_outs, after_outs, logits, extra['attn'][0]
elif se_predict == "target":
return before_outs, after_outs, logits, extra['attn'][0]
elif se_predict == "delta":
before_outs = before_outs - src_tokens
after_outs = after_outs - src_tokens
return before_outs, after_outs, logits, extra['attn'][0]
else:
raise ValueError(f"{se_predict} not in [masking, target, delta]")
if task_name is not None and task_name == 's2t':
#return self.text_decoder_postnet(decoder_output), None
return (self.text_decoder_postnet(decoder_output), None), encoder_output
if output_type == 'text':
return (self.text_decoder_postnet(decoder_output), None), codebook_out, encoder_output
else:
if target_list is not None:
return hubert_results, (self.speech_decoder_postnet(decoder_output) + (extra['attn'][0],))
else:
return self.speech_decoder_postnet(decoder_output) + (extra['attn'][0],)
def _integrate_with_speaker_cls(self, pad_input, encoder_input, encoder_padding_mask=None, cls_first=True):
"""
encoder_input: [B, T, C]
encoder_padding_mask: [B, T]
"""
if hasattr(self, "text_decoder_prenet"):
if isinstance(pad_input, tuple):
repeat_cls_vector, repeat_cls_mask = pad_input
else:
repeat_cls_vector, repeat_cls_mask, _ = self.text_decoder_prenet(pad_input)
if encoder_padding_mask is not None:
bsz = encoder_input.size(0)
tsz = encoder_input.size(1)
encoder_padding_mask = encoder_input.new_zeros((bsz, tsz)) == 1.0
if repeat_cls_mask is None:
mask_size = (encoder_padding_mask.size(0), 1)
mask_type = encoder_padding_mask.dtype
repeat_cls_mask = encoder_padding_mask.new_zeros(mask_size) == 1.0
ret_encoder_padding_mask = torch.cat([repeat_cls_mask, encoder_padding_mask], dim=1)
if cls_first:
ret_encoder_input = torch.cat([repeat_cls_vector, encoder_input], dim=1)
else:
ret_encoder_input = torch.cat([encoder_input, encoder_input[:,-1:,:]], dim=1)
mask_size = (encoder_padding_mask.size(0), 1)
mask_type = encoder_padding_mask.dtype
repeat_cls_mask_ = encoder_padding_mask.new_ones(mask_size) == 1.0
encoder_padding_mask_ = torch.cat([encoder_padding_mask, repeat_cls_mask_], dim=1)
indices = encoder_padding_mask.eq(False).float().sum(1).type(torch.int64).unsqueeze(1)
indices_mask = torch.zeros_like(ret_encoder_padding_mask).scatter(1, indices, 1.0)
ret_encoder_input = ret_encoder_input * (1.0 - encoder_padding_mask_.type(ret_encoder_input.dtype).unsqueeze(2)) \
+ repeat_cls_vector * indices_mask.type(repeat_cls_vector.dtype).unsqueeze(2)
return ret_encoder_input, ret_encoder_padding_mask
def _integrate_with_spk_embed(self, hs, spembs):
"""Integrate speaker embedding with hidden states.
Args:
hs (Tensor): Batch of hidden state sequences (B, Tmax, adim).
spembs (Tensor): Batch of speaker embeddings (B, spk_embed_dim).
Returns:
Tensor: Batch of integrated hidden state sequences (B, Tmax, adim)
"""
if self.spk_embed_integration_type == "add":
# apply projection and then add to hidden states
spembs = self.projection(F.normalize(spembs))
hs = hs + spembs.unsqueeze(1)
elif self.spk_embed_integration_type == "concat":
# concat hidden states with spk embeds and then apply projection
spembs = F.normalize(spembs).unsqueeze(1).expand(-1, hs.size(1), -1)
hs = self.projection(torch.cat([hs, spembs], dim=-1))
else:
raise NotImplementedError("support only add or concat.")
return hs
def load_state_dict(
self,
state_dict,
strict=True,
model_cfg=None,
args=None,
):
"""NOT STRICT Copies parameters and buffers from *state_dict* into this module and
its descendants.
Overrides the method in :class:`nn.Module`. Compared with that method
this additionally "upgrades" *state_dicts* from old checkpoints.
"""
# self.prune_modules(model_cfg.modules_filter)
model_dict_size = self.text_decoder_postnet.output_projection.out_features
ckpt_dict_size = state_dict["text_decoder_postnet.output_projection.weight"].size(0)
if model_dict_size != ckpt_dict_size:
# reset dictionary-related modules, such as embedding table and encoder ctc embed
logger.warn(f"not equal dictionary between model and checkpoint: {model_dict_size} vs {ckpt_dict_size}")
logger.info(f"reset model dictionary with size of {model_dict_size}")
removed_keys = [
key for key in state_dict.keys() if any(
key.startswith(previ) for previ in [
"encoder.proj", "text_encoder_prenet", "text_decoder_prenet", "text_decoder_postnet"
]
)
]
for key in removed_keys:
state_dict.pop(key, None)
logger.info(f"removed loaded checkpoint: {key}")
for m in self._modules.keys():
m_state_dict = {
key.replace(f"{m}.", ""): value for key, value in state_dict.items() if key.startswith(f"{m}.")
}
if hasattr(self, m):
self._modules[m].load_state_dict(m_state_dict, False)
return self
def prune_modules(self, modules_filter=None):
"""Prune unused modules for specific tasks."""
if modules_filter is None:
return
elif modules_filter == "s2c":
if hasattr(self, "text_encoder_prenet"): del self.text_encoder_prenet
if hasattr(self, "speech_decoder_prenet") and getattr(self.args, "sid_pooling_layer", None) != "decoder-las":
del self.speech_decoder_prenet
if hasattr(self, "speech_decoder_postnet"): del self.speech_decoder_postnet
if hasattr(self, "text_decoder_postnet"): del self.text_decoder_postnet
if hasattr(self, "speech_encoder_postnet"): del self.speech_encoder_postnet
if hasattr(self.encoder, "proj"): self.encoder.proj = None
if hasattr(self, "projection"): del self.projection
if hasattr(self, "quantizer"): del self.quantizer
if getattr(self.args, "sid_pooling_layer", "decoder").startswith("encoder") or getattr(self.args, "sid_decoder_speaker", False):
if hasattr(self.decoder, "dropout_module"): del self.decoder.dropout_module
if hasattr(self.decoder, "layers"): del self.decoder.layers
if hasattr(self.decoder, "layer_norm"): del self.decoder.layer_norm
if hasattr(self, "text_decoder_prenet"): del self.text_decoder_prenet
elif modules_filter == "s2s":
if hasattr(self, "speaker_decoder_postnet"): del self.speaker_decoder_postnet
if hasattr(self, "text_encoder_prenet"): del self.text_encoder_prenet
if hasattr(self, "text_decoder_prenet"): del self.text_decoder_prenet
if hasattr(self, "text_decoder_postnet"): del self.text_decoder_postnet
if hasattr(self, "speech_encoder_postnet"): del self.speech_encoder_postnet
if hasattr(self.encoder, "proj"): self.encoder.proj = None
if hasattr(self, "projection"): del self.projection
if hasattr(self, "quantizer"): del self.quantizer
elif modules_filter == "t2s":
if hasattr(self, "speaker_decoder_postnet"): del self.speaker_decoder_postnet
if hasattr(self, "speech_encoder_prenet"): del self.speech_encoder_prenet
if hasattr(self, "text_decoder_prenet"): del self.text_decoder_prenet
if hasattr(self, "text_decoder_postnet"): del self.text_decoder_postnet
if hasattr(self, "speech_encoder_postnet"): del self.speech_encoder_postnet
if hasattr(self.encoder, "proj"): self.encoder.proj = None
if hasattr(self, "projection"): del self.projection
if hasattr(self, "quantizer"): del self.quantizer
elif modules_filter == "s3prl":
# remain the encoder and the pre/post net
if hasattr(self.decoder, "dropout_module"): del self.decoder.dropout_module
if hasattr(self.decoder, "layers"): del self.decoder.layers
if hasattr(self.decoder, "layer_norm"): del self.decoder.layer_norm
if hasattr(self, "speaker_decoder_postnet"): del self.speaker_decoder_postnet
if hasattr(self, "text_decoder_prenet"): del self.text_decoder_prenet
if hasattr(self, "text_decoder_postnet"): del self.text_decoder_postnet
if hasattr(self, "speech_decoder_prenet"): del self.speech_decoder_prenet
if hasattr(self, "speech_decoder_postnet"): del self.speech_decoder_postnet
if hasattr(self, "speech_encoder_postnet"): del self.speech_encoder_postnet
if hasattr(self.encoder, "proj"): self.encoder.proj = None
if hasattr(self, "projection"): del self.projection
if hasattr(self, "quantizer"): del self.quantizer
def forward_encoder_torchscript(self, net_input: Dict[str, Tensor]):
"""A TorchScript-compatible version of forward.
Encoders which use additional arguments may want to override
this method for TorchScript compatibility.
"""
if torch.jit.is_scripting():
return self.forward_encoder(
source=net_input["source"],
padding_mask=net_input["padding_mask"]
)
else:
return self.forward_encoder_non_torchscript(net_input)
@torch.jit.unused
def forward_encoder_non_torchscript(self, net_input: Dict[str, Tensor]):
encoder_input = {
k: v for k, v in net_input.items() if k != "prev_output_tokens" and k != "task_name"
}
return self.forward_encoder(**encoder_input)
def forward_encoder(self, source, padding_mask=None):
# Encoder Prenet
encoder_input, encoder_padding_mask = self.speech_encoder_prenet(source, padding_mask=padding_mask, mask=False)
# Encoder
encoder_output = self.encoder(encoder_input, encoder_padding_mask)
return encoder_output
def forward_text_encoder(self, src_tokens):
# Text Encoder Prenet
encoder_input, encoder_padding_mask = self.text_encoder_prenet(src_tokens)
# Encoder
encoder_output = self.encoder(encoder_input, encoder_padding_mask)
return encoder_output
def forward_decoder(self, tokens, encoder_out, incremental_state):
# Decoder Prenet
prev_output_tokens, tgt_mask, incremental_state = self.text_decoder_prenet(tokens, incremental_state)
# Decoder
decoder_output, extra = self.decoder(
prev_output_tokens,
tgt_mask,
encoder_out=encoder_out,
incremental_state=incremental_state,
)
# Decoder Postnet
return self.text_decoder_postnet(decoder_output), extra
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
super().set_num_updates(num_updates)
self.num_updates = num_updates
def generate_class(self, source, prev_output_tokens, **kwargs):
encoder_out = self.forward_encoder(source, padding_mask=kwargs["padding_mask"])
prev_output_tokens, tgt_mask, _ = self.text_decoder_prenet(prev_output_tokens, {})
prev_output_tokens = torch.zeros_like(prev_output_tokens) # s2c use zero vector as [CLS]
decoder_output, extra = self.decoder(
prev_output_tokens,
tgt_mask,
encoder_out=encoder_out,
)
decoder_out, embed = self.speaker_decoder_postnet(decoder_output.mean(1))
pred_class = decoder_out.argmax(1)
return pred_class
def generate_speech(self, source=None, src_tokens=None, spkembs=None, **kwargs):
assert source is not None or src_tokens is not None
threshold = kwargs.get("threshold", 0.5)
minlenratio = kwargs.get("threshold", 0.0)
if source is None:
assert src_tokens.size(0) == 1
encoder_out = self.forward_text_encoder(src_tokens)
maxlenratio = kwargs.get("threshold", 20.0)
else:
assert source.size(0) == 1
encoder_out = self.forward_encoder(source, padding_mask=kwargs["padding_mask"])
maxlenratio = kwargs.get("threshold", 10.0)
if spkembs is not None and self.spk_embed_integration_type != "pre":
encoder_out["encoder_out"] = [self._integrate_with_spk_embed(
encoder_out["encoder_out"][0].transpose(0, 1), spkembs
).transpose(0, 1)]
spkembs = None
maxlen = int(encoder_out["encoder_out"][0].size(0) * maxlenratio / self.reduction_factor)
minlen = int(encoder_out["encoder_out"][0].size(0) * minlenratio / self.reduction_factor)
idx = 0
ys = encoder_out["encoder_out"][0].new_zeros(1, 1, self.speech_decoder_postnet.odim)
outs, probs = [], []
# forward decoder step-by-step
if isinstance(self.decoder, FairseqIncrementalDecoder):
incremental_states = {}
else:
incremental_states = None
attns = []
while True:
# update index
idx += 1
# calculate output and stop prob at idx-th step
decoder_in, _ = self.speech_decoder_prenet(ys, spkembs=spkembs)
z, extra = self.decoder(decoder_in[:,-1:], None, encoder_out, incremental_states, alignment_layer=-1)
outs += [self.speech_decoder_postnet.feat_out(z[0, -1]).view(self.reduction_factor, self.speech_decoder_postnet.odim)] # [(r, odim), ...]
probs += [torch.sigmoid(self.speech_decoder_postnet.prob_out(z[0, -1]))] # [(r), ...]
# update next inputs
ys = torch.cat((ys, outs[-1][-1].view(1, 1, self.speech_decoder_postnet.odim)), dim=1) # (1, idx + 1, odim)
attns.append(torch.stack([att_l[0] for att_l in extra['attn'][0]], dim=0))
# check whether to finish generation
if int(sum(probs[-1] >= threshold)) > 0 or idx >= maxlen:
# check mininum length
if idx < minlen:
continue
outs = (torch.cat(outs, dim=0).unsqueeze(0).transpose(1, 2)) # (L, odim) -> (1, L, odim) -> (1, odim, L)
if self.speech_decoder_postnet.postnet is not None:
outs = outs + self.speech_decoder_postnet.postnet(outs) # (1, odim, L)
outs = outs.transpose(2, 1).squeeze(0) # (L, odim)
probs = torch.cat(probs, dim=0)
attn = torch.cat(attns, dim=2)
break
if outs.size(0) == maxlen:
logging.warning("output length reaches maximum length")
return outs, probs, attn
@register_model_architecture(model_name="artst_transformer", arch_name="artst_transformer")
def base_architecture(args):
# Transformer
args.bert_init = getattr(args, "bert_init", False)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 768 * 4)
args.encoder_layers = getattr(args, "encoder_layers", 12)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", args.dropout)
args.activation_dropout = getattr(args, "activation_dropout", args.dropout)
args.activation_fn = getattr(args, "activation_fn", "gelu")
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
args.max_text_positions = getattr(args, "max_text_positions", DEFAULT_MAX_TEXT_POSITIONS)
args.max_speech_positions = getattr(args, "max_speech_positions", DEFAULT_MAX_SPEECH_POSITIONS)
# Espnet related, including prenet, postnet
args.eprenet_conv_layers = getattr(args, "eprenet_conv_layers", 0)
args.eprenet_conv_filts = getattr(args, "eprenet_conv_filts", 0)
args.eprenet_conv_chans = getattr(args, "eprenet_conv_chans", 0)
args.use_batch_norm = getattr(args, "use_batch_norm", True)
args.eprenet_dropout_rate = getattr(args, "eprenet_dropout_rate", 0.0)
args.enc_use_scaled_pos_enc = getattr(args, "enc_use_scaled_pos_enc", True)
args.dec_use_scaled_pos_enc = getattr(args, "dec_use_scaled_pos_enc", True)
args.postnet_layers = getattr(args, "postnet_layers", 5)
args.postnet_chans = getattr(args, "postnet_chans", 256)
args.postnet_filts = getattr(args, "postnet_filts", 5)
args.postnet_dropout_rate = getattr(args, "postnet_dropout_rate", 0.5)
args.dprenet_dropout_rate = getattr(args, "dprenet_dropout_rate", 0.5)
args.dprenet_layers = getattr(args, "dprenet_layers", 2)
args.dprenet_units = getattr(args, "dprenet_units", 256)
args.initial_encoder_alpha = getattr(args, "initial_encoder_alpha", 1.0)
args.initial_decoder_alpha = getattr(args, "initial_decoder_alpha", 1.0)
args.spk_embed_integration_type = getattr(args, "spk_embed_integration_type", "pre")
args.spk_embed_dim = getattr(args, "spk_embed_dim", 512)
args.encoder_reduction_factor = getattr(args, "encoder_reduction_factor", 1)
args.reduction_factor = getattr(args, "reduction_factor", 2)
args.transformer_enc_positional_dropout_rate = getattr(args, "transformer_enc_positional_dropout_rate", 0.1)
args.transformer_dec_positional_dropout_rate = getattr(args, "transformer_dec_positional_dropout_rate", 0.1)
args.layer_norm_eps = getattr(args, "layer_norm_eps", 1e-5)
args.no_scale_embedding = getattr(args, "no_scale_embedding", True)
# Convolutional subsampler
args.encoder_speech_prenet = getattr(args, "encoder_speech_prenet", "conv")
args.conv_kernel_sizes = getattr(args, "conv_kernel_sizes", "5,5")
args.conv_channels = getattr(args, "conv_channels", 1024)
args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.share_input_output_embed = getattr(args, "share_input_output_embed", False)
args.share_ctc_embed = getattr(args, "share_ctc_embed", False)
args.freeze_encoder_updates = getattr(args, "freeze_encoder_updates", 0)
args.freeze_decoder_updates = getattr(args, "freeze_decoder_updates", 0)
args.no_freeze_encoder_layer = getattr(args, "no_freeze_encoder_layer", None)
## sid
args.sid_embed_dim = getattr(args, "sid_embed_dim", 128)
args.sid_pooling_layer = getattr(args, "sid_pooling_layer", "decoder")
args.softmax_scale = getattr(args, "softmax_scale", 1)
args.softmax_margin = getattr(args, "softmax_margin", 0)
args.softmax_easy_margin = getattr(args, "softmax_easy_margin", False)
args.modules_filter = getattr(args, "modules_filter", None)
## Hubert
args.conv_pos = getattr(args, "conv_pos", 128)
args.conv_pos_groups = getattr(args, "conv_pos_groups", 16)
args.target_glu = getattr(args, "target_glu", False)
args.logit_temp = getattr(args, "logit_temp", 0.1)
args.final_dim = getattr(args, "final_dim", 256)
args.untie_final_proj = getattr(args, "untie_final_proj", True)
args.feature_grad_mult = getattr(args, "feature_grad_mult", 0.1)
args.use_sent_enc_layer = getattr(args, "use_sent_enc_layer", True)
# hubert feature extractor
args.extractor_mode = getattr(args, "extractor_mode", "default")
args.conv_feature_layers = getattr(args, "conv_feature_layers", "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2")
args.conv_bias = getattr(args, "conv_bias", False)
# mask
args.hubert_mask_length = getattr(args, "hubert_mask_length", 10)
args.mask_prob = getattr(args, "mask_prob", 0.0)
args.mask_selection = getattr(args, "mask_selection", "static")
args.mask_other = getattr(args, "mask_other", 0)
args.no_mask_overlap = getattr(args, "no_mask_overlap", False)
args.mask_min_space = getattr(args, "mask_min_space", 1)
# channel mask
args.mask_channel_length = getattr(args, "mask_channel_length", 10)
args.mask_channel_prob = getattr(args, "mask_channel_prob", 0.0)
args.mask_channel_selection = getattr(args, "mask_channel_selection", "static")
args.mask_channel_other = getattr(args, "mask_channel_other", 0)
args.no_mask_channel_overlap = getattr(args, "no_mask_channel_overlap", False)
args.mask_channel_min_space = getattr(args, "mask_channel_min_space", 1)
# loss computation
args.skip_masked = getattr(args, "skip_masked", False)
args.skip_nomask = getattr(args, "skip_nomask", False)
# conv Pos
args.use_conv_pos = getattr(args, "use_conv_pos", False)
args.use_sinc_pos = getattr(args, "use_sinc_pos", False)
# codebook
args.use_codebook = getattr(args, "use_codebook", False)
args.latent_vars = getattr(args, "latent_vars", 100)
args.latent_groups = getattr(args, "latent_groups", 2)
args.latent_dim = getattr(args, "latent_dim", 0)
args.latent_temp = getattr(args, "latent_temp", (2, 0.5, 0.999995))
args.quantizer_depth = getattr(args, "quantizer_depth", 1)
args.quantizer_factor = getattr(args, "quantizer_factor", 3)
args.codebook_prob = getattr(args, "codebook_prob", 0.5)
# Relative pos embed
args.relative_position_embedding = getattr(args, "relative_position_embedding", False)
args.num_buckets = getattr(args, "num_buckets", 320)
args.max_distance = getattr(args, "max_distance", 1280)
args.encoder_max_relative_position = getattr(args, "encoder_max_relative_position", 160)
args.decoder_max_relative_position = getattr(args, "decoder_max_relative_position", 160)
@register_model_architecture("artst_transformer", "artst_transformer_base")
def artst_transformer_base(args):
args.use_conv_pos = getattr(args, "use_conv_pos", True)
args.use_sinc_pos = getattr(args, "use_sinc_pos", True)
args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.layer_norm_first = getattr(args, "layer_norm_first", False)
args.relative_position_embedding = getattr(args, "relative_position_embedding", True)
args.dropout = getattr(args, "dropout", 0.1)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0.05)
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.05)
args.mask_prob = getattr(args, "mask_prob", 0.80)
base_architecture(args)
@register_model_architecture("artst_transformer", "artst_transformer_large")
def artst_transformer_large(args):
args.use_conv_pos = getattr(args, "use_conv_pos", True)
args.use_sinc_pos = getattr(args, "use_sinc_pos", True)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
args.layer_norm_first = getattr(args, "layer_norm_first", True)
args.relative_position_embedding = getattr(args, "relative_position_embedding", True)
args.dropout = getattr(args, "dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0.0)
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_layers = getattr(args, "encoder_layers", 24)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.feature_grad_mult = getattr(args, "feature_grad_mult", 1.0)
args.extractor_mode = getattr(args, "extractor_mode", "layer_norm")
args.final_dim = getattr(args, "final_dim", 768)
args.mask_prob = getattr(args, "mask_prob", 0.80)
base_architecture(args)
@register_model_architecture("artst_transformer", "artst_transformer_base_asr")
def artst_transformer_base_asr(args):
args.use_conv_pos = getattr(args, "use_conv_pos", True)
args.use_sinc_pos = getattr(args, "use_sinc_pos", True)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.layer_norm_first = getattr(args, "layer_norm_first", False)
args.relative_position_embedding = getattr(args, "relative_position_embedding", True)
args.dropout = getattr(args, "dropout", 0.1)
args.activation_dropout = getattr(args, "activation_dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.feature_grad_mult = getattr(args, "feature_grad_mult", 0.0)
args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0.1)
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.1)
args.mask_prob = getattr(args, "mask_prob", 0.75)
args.mask_selection = getattr(args, "mask_selection", "static")
args.mask_channel_length = getattr(args, "mask_channel_length", 64)
args.mask_channel_prob = getattr(args, "mask_channel_prob", 0.5)
args.mask_channel_selection = getattr(args, "mask_channel_selection", "static")
args.max_text_positions = getattr(args, "max_text_positions", 600)
base_architecture(args)
|