File size: 15,920 Bytes
1547a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST

# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------

from typing import Dict, List, Optional

import torch
import torch.nn as nn
import contextlib
from fairseq import utils
from fairseq.modules import LayerNorm
from .multihead_attention import MultiheadAttention
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.quant_noise import quant_noise
from torch import Tensor


class TransformerSentenceEncoderLayer(nn.Module):
    """
    Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
    models.
    """

    def __init__(
        self,
        embedding_dim: float = 768,
        ffn_embedding_dim: float = 3072,
        num_attention_heads: float = 8,
        dropout: float = 0.1,
        attention_dropout: float = 0.1,
        activation_dropout: float = 0.1,
        activation_fn: str = "relu",
        layer_norm_first: bool = False,
        has_relative_attention_bias: bool = False,
    ) -> None:

        super().__init__()
        # Initialize parameters
        self.embedding_dim = embedding_dim
        self.dropout = dropout
        self.activation_dropout = activation_dropout

        # Initialize blocks
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.self_attn = MultiheadAttention(
            self.embedding_dim,
            num_attention_heads,
            dropout=attention_dropout,
            self_attention=True,
            has_relative_attention_bias=has_relative_attention_bias,
        )

        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(self.activation_dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.layer_norm_first = layer_norm_first

        # layer norm associated with the self attention layer
        self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
        self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
        self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)

        # layer norm associated with the position wise feed-forward NN
        self.final_layer_norm = LayerNorm(self.embedding_dim)

        if has_relative_attention_bias:
            self.norm_k = LayerNorm(self.embedding_dim//num_attention_heads)

    def forward(
        self,
        x: torch.Tensor,
        self_attn_mask: torch.Tensor = None,
        self_attn_padding_mask: torch.Tensor = None,
        need_weights: bool = False,
        att_args=None,
        pos_bias=None,
    ):
        """
        LayerNorm is applied either before or after the self-attention/ffn
        modules similar to the original Transformer imlementation.
        """
        residual = x

        if self.layer_norm_first:
            x = self.self_attn_layer_norm(x)
            if pos_bias is not None:
                pos_bias = self.norm_k(pos_bias)
            x, attn = self.self_attn(
                query=x,
                key=x,
                value=x,
                key_padding_mask=self_attn_padding_mask,
                attn_mask=self_attn_mask,
                position_bias=pos_bias,
            )
            x = self.dropout1(x)
            x = residual + x

            residual = x
            x = self.final_layer_norm(x)
            x = self.activation_fn(self.fc1(x))
            x = self.dropout2(x)
            x = self.fc2(x)
            x = self.dropout3(x)
            x = residual + x
        else:
            x, attn = self.self_attn(
                query=x,
                key=x,
                value=x,
                key_padding_mask=self_attn_padding_mask,
                position_bias=pos_bias,
            )

            x = self.dropout1(x)
            x = residual + x

            x = self.self_attn_layer_norm(x)

            residual = x
            x = self.activation_fn(self.fc1(x))
            x = self.dropout2(x)
            x = self.fc2(x)
            x = self.dropout3(x)
            x = residual + x
            x = self.final_layer_norm(x)

        return x, attn


class TransformerDecoderLayer(nn.Module):
    """Decoder layer block.

    In the original paper each operation (multi-head attention, encoder
    attention or FFN) is postprocessed with: `dropout -> add residual ->
    layernorm`. In the tensor2tensor code they suggest that learning is more
    robust when preprocessing each layer with layernorm and postprocessing with:
    `dropout -> add residual`. We default to the approach in the paper, but the
    tensor2tensor approach can be enabled by setting
    *args.decoder_normalize_before* to ``True``.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        no_encoder_attn (bool, optional): whether to attend to encoder outputs
            (default: False).
    """

    def __init__(
        self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False, has_relative_attention_bias=False
    ):
        super().__init__()
        self.embed_dim = args.decoder_embed_dim
        self.num_updates = 0
        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__
        )
        self.quant_noise = getattr(args, "quant_noise_pq", 0)
        self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8)

        self.cross_self_attention = getattr(args, "cross_self_attention", False)

        self.freeze_decoder_updates = getattr(args, "freeze_decoder_updates", 0)

        self.self_attn = self.build_self_attention(
            self.embed_dim,
            args,
            add_bias_kv=add_bias_kv,
            add_zero_attn=add_zero_attn,
        )

        self.activation_fn = utils.get_activation_fn(
            activation=str(args.activation_fn)
            if getattr(args, "activation_fn", None) is not None
            else "relu"
        )
        activation_dropout_p = getattr(args, "activation_dropout", 0) or 0
        if activation_dropout_p == 0:
            # for backwards compatibility with models that use args.relu_dropout
            activation_dropout_p = getattr(args, "relu_dropout", 0) or 0
        self.activation_dropout_module = FairseqDropout(
            float(activation_dropout_p), module_name=self.__class__.__name__
        )
        self.normalize_before = args.decoder_normalize_before

        export = getattr(args, "export", False)
        self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export)

        if no_encoder_attn:
            self.encoder_attn = None
            self.encoder_attn_layer_norm = None
        else:
            self.encoder_attn = self.build_encoder_attention(self.embed_dim, args)
            self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export)

        self.fc1 = self.build_fc1(
            self.embed_dim,
            args.decoder_ffn_embed_dim,
            self.quant_noise,
            self.quant_noise_block_size,
        )
        self.fc2 = self.build_fc2(
            args.decoder_ffn_embed_dim,
            self.embed_dim,
            self.quant_noise,
            self.quant_noise_block_size,
        )

        self.final_layer_norm = LayerNorm(self.embed_dim, export=export)
        self.need_attn = True

        self.onnx_trace = False

        self.has_relative_attention_bias = has_relative_attention_bias
        if self.has_relative_attention_bias:
            self.norm_k = LayerNorm(self.embed_dim//args.decoder_attention_heads)

    def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size):
        return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)

    def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size):
        return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)

    def build_self_attention(
        self, embed_dim, args, add_bias_kv=False, add_zero_attn=False
    ):
        return MultiheadAttention(
            embed_dim,
            args.decoder_attention_heads,
            dropout=args.attention_dropout,
            add_bias_kv=add_bias_kv,
            add_zero_attn=add_zero_attn,
            self_attention=not getattr(args, "cross_self_attention", False),
            q_noise=self.quant_noise,
            qn_block_size=self.quant_noise_block_size,
            #has_relative_attention_bias=args.has_relative_attention_bias,
        )

    def build_encoder_attention(self, embed_dim, args):
        return MultiheadAttention(
            embed_dim,
            args.decoder_attention_heads,
            kdim=getattr(args, "encoder_embed_dim", None),
            vdim=getattr(args, "encoder_embed_dim", None),
            dropout=args.attention_dropout,
            encoder_decoder_attention=True,
            q_noise=self.quant_noise,
            qn_block_size=self.quant_noise_block_size,
        )

    def prepare_for_onnx_export_(self):
        self.onnx_trace = True

    def residual_connection(self, x, residual):
        return residual + x

    def forward(
        self,
        x,
        encoder_out: Optional[torch.Tensor] = None,
        encoder_padding_mask: Optional[torch.Tensor] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        prev_self_attn_state: Optional[List[torch.Tensor]] = None,
        prev_attn_state: Optional[List[torch.Tensor]] = None,
        self_attn_mask: Optional[torch.Tensor] = None,
        self_attn_padding_mask: Optional[torch.Tensor] = None,
        need_attn: bool = False,
        need_head_weights: bool = False,
        pos_bias=None,
    ):
        """
        Args:
            x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
            encoder_padding_mask (ByteTensor, optional): binary
                ByteTensor of shape `(batch, src_len)` where padding
                elements are indicated by ``1``.
            need_attn (bool, optional): return attention weights
            need_head_weights (bool, optional): return attention weights
                for each head (default: return average over heads).

        Returns:
            encoded output of shape `(seq_len, batch, embed_dim)`
        """
        ft = self.freeze_decoder_updates <= self.num_updates
    
        with torch.no_grad() if not ft else contextlib.ExitStack():
            if need_head_weights:
                need_attn = True

            residual = x
            if self.normalize_before:
                x = self.self_attn_layer_norm(x)
                if pos_bias is not None:
                    pos_bias = self.norm_k(pos_bias)
            if prev_self_attn_state is not None:
                prev_key, prev_value = prev_self_attn_state[:2]
                saved_state: Dict[str, Optional[Tensor]] = {
                    "prev_key": prev_key,
                    "prev_value": prev_value,
                }
                if len(prev_self_attn_state) >= 3:
                    saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
                assert incremental_state is not None
                self.self_attn._set_input_buffer(incremental_state, saved_state)
            _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
            if self.cross_self_attention and not (
                incremental_state is not None
                and _self_attn_input_buffer is not None
                and "prev_key" in _self_attn_input_buffer
            ):
                if self_attn_mask is not None:
                    assert encoder_out is not None
                    self_attn_mask = torch.cat(
                        (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
                    )
                if self_attn_padding_mask is not None:
                    if encoder_padding_mask is None:
                        assert encoder_out is not None
                        encoder_padding_mask = self_attn_padding_mask.new_zeros(
                            encoder_out.size(1), encoder_out.size(0)
                        )
                    self_attn_padding_mask = torch.cat(
                        (encoder_padding_mask, self_attn_padding_mask), dim=1
                    )
                assert encoder_out is not None
                y = torch.cat((encoder_out, x), dim=0)
            else:
                y = x
            
            x, attn = self.self_attn(
                query=x,
                key=y,
                value=y,
                key_padding_mask=self_attn_padding_mask,
                incremental_state=incremental_state,
                need_weights=False,
                attn_mask=self_attn_mask,
                position_bias=pos_bias,
            )
            x = self.dropout_module(x)
            x = self.residual_connection(x, residual)
            if not self.normalize_before:
                x = self.self_attn_layer_norm(x)

        if self.encoder_attn is not None and encoder_out is not None:
            residual = x
            if self.normalize_before:
                x = self.encoder_attn_layer_norm(x)
            if prev_attn_state is not None:
                prev_key, prev_value = prev_attn_state[:2]
                saved_state: Dict[str, Optional[Tensor]] = {
                    "prev_key": prev_key,
                    "prev_value": prev_value,
                }
                if len(prev_attn_state) >= 3:
                    saved_state["prev_key_padding_mask"] = prev_attn_state[2]
                assert incremental_state is not None
                self.encoder_attn._set_input_buffer(incremental_state, saved_state)

            x, attn = self.encoder_attn(
                query=x,
                key=encoder_out,
                value=encoder_out,
                key_padding_mask=encoder_padding_mask,
                incremental_state=incremental_state,
                static_kv=True,
                need_weights=need_attn or (not self.training and self.need_attn),
                need_head_weights=need_head_weights,
            )
            x = self.dropout_module(x)
            x = self.residual_connection(x, residual)
            if not self.normalize_before:
                x = self.encoder_attn_layer_norm(x)

        with torch.no_grad() if not ft else contextlib.ExitStack():
            residual = x
            if self.normalize_before:
                x = self.final_layer_norm(x)

            x = self.activation_fn(self.fc1(x))
            x = self.activation_dropout_module(x)
            x = self.fc2(x)
            x = self.dropout_module(x)
            x = self.residual_connection(x, residual)
            if not self.normalize_before:
                x = self.final_layer_norm(x)
            if self.onnx_trace and incremental_state is not None:
                saved_state = self.self_attn._get_input_buffer(incremental_state)
                assert saved_state is not None
                if self_attn_padding_mask is not None:
                    self_attn_state = [
                        saved_state["prev_key"],
                        saved_state["prev_value"],
                        saved_state["prev_key_padding_mask"],
                    ]
                else:
                    self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
                return x, attn, self_attn_state
        return x, attn, None

    def make_generation_fast_(self, need_attn: bool = False, **kwargs):
        self.need_attn = need_attn

    def set_num_updates(self, num_updates):
        """Set the number of parameters updates."""
        self.num_updates = num_updates