Spaces:
Runtime error
Runtime error
File size: 10,443 Bytes
1547a56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------
import logging
import os
from typing import Any, List, Optional
import librosa
import numpy as np
import torch
import torch.nn.functional as F
from fairseq.data.fairseq_dataset import FairseqDataset
logger = logging.getLogger(__name__)
def _collate_frames(
frames: List[torch.Tensor], is_audio_input: bool = False
):
"""
Convert a list of 2D frames into a padded 3D tensor
Args:
frames (list): list of 2D frames of size L[i]*f_dim. Where L[i] is
length of i-th frame and f_dim is static dimension of features
Returns:
3D tensor of size len(frames)*len_max*f_dim where len_max is max of L[i]
"""
max_len = max(frame.size(0) for frame in frames)
if is_audio_input:
out = frames[0].new_zeros((len(frames), max_len))
else:
out = frames[0].new_zeros((len(frames), max_len, frames[0].size(1)))
for i, v in enumerate(frames):
out[i, : v.size(0)] = v
return out
def load_audio(manifest_path, max_keep, min_keep):
"""manifest tsv: src_wav, src_nframe, tgt_wav, tgt_nframe, tgt_spkemb"""
n_long, n_short = 0, 0
src_names, tgt_names, inds, sizes, tgt_sizes, spk_embeds = [], [], [], [], [], []
with open(manifest_path) as f:
root = f.readline().strip()
for ind, line in enumerate(f):
items = line.strip().split("\t")
assert len(items) >= 2, line
sz = int(items[1])
if min_keep is not None and sz < min_keep:
n_short += 1
elif max_keep is not None and sz > max_keep:
n_long += 1
else:
src_names.append(items[0])
tgt_names.append(items[2])
tgt_sizes.append(items[3])
spk_embeds.append(items[4])
inds.append(ind)
sizes.append(sz)
tot = ind + 1
logger.info(
(
f"max_keep={max_keep}, min_keep={min_keep}, "
f"loaded {len(src_names)}, skipped {n_short} short and {n_long} long, "
f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}"
)
)
return root, src_names, inds, tot, sizes, tgt_names, tgt_sizes, spk_embeds
def logmelfilterbank(
audio,
sampling_rate,
fft_size=1024,
hop_size=256,
win_length=None,
window="hann",
num_mels=80,
fmin=80,
fmax=7600,
eps=1e-10,
):
"""Compute log-Mel filterbank feature.
(https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/parallel_wavegan/bin/preprocess.py)
Args:
audio (ndarray): Audio signal (T,).
sampling_rate (int): Sampling rate.
fft_size (int): FFT size.
hop_size (int): Hop size.
win_length (int): Window length. If set to None, it will be the same as fft_size.
window (str): Window function type.
num_mels (int): Number of mel basis.
fmin (int): Minimum frequency in mel basis calculation.
fmax (int): Maximum frequency in mel basis calculation.
eps (float): Epsilon value to avoid inf in log calculation.
Returns:
ndarray: Log Mel filterbank feature (#frames, num_mels).
"""
# get amplitude spectrogram
x_stft = librosa.stft(audio, n_fft=fft_size, hop_length=hop_size,
win_length=win_length, window=window, pad_mode="reflect")
spc = np.abs(x_stft).T # (#frames, #bins)
# get mel basis
fmin = 0 if fmin is None else fmin
fmax = sampling_rate / 2 if fmax is None else fmax
mel_basis = librosa.filters.mel(sr=sampling_rate, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax)
return np.log10(np.maximum(eps, np.dot(spc, mel_basis.T)))
class SpeechToSpeechDataset(FairseqDataset):
def __init__(
self,
manifest_path: str,
sample_rate: float,
max_keep_sample_size: Optional[int] = None,
min_keep_sample_size: Optional[int] = None,
shuffle: bool = True,
normalize: bool = False,
reduction_factor: int = 1,
):
self.audio_root, self.audio_names, inds, tot, self.wav_sizes, self.tgt_audios, self.tgt_sizes, self.tgt_spkembs = load_audio(
manifest_path, max_keep_sample_size, min_keep_sample_size
)
self.sample_rate = sample_rate
self.shuffle = shuffle
self.normalize = normalize
self.reduction_factor = reduction_factor
logger.info(
f"reduction_factor={reduction_factor}, normalize={normalize}"
)
def get_audio(self, index):
import soundfile as sf
wav_fbank = []
for name in [self.audio_names[index], self.tgt_audios[index]]:
wav_path = os.path.join(self.audio_root, name)
wav, cur_sample_rate = sf.read(wav_path)
wav = torch.from_numpy(wav).float()
fbank = logmelfilterbank(
wav.view(-1).cpu().numpy(), 16000
)
fbank = torch.from_numpy(fbank).float()
wav = self.postprocess(wav, cur_sample_rate)
wav_fbank.append(wav)
wav_fbank.append(fbank)
src_wav, src_fbank, tgt_wav, tgt_fbank = wav_fbank
return src_wav, src_fbank, tgt_wav, tgt_fbank
def __getitem__(self, index):
src_wav, src_fbank, tgt_wav, tgt_fbank = self.get_audio(index)
spkembs = np.load(os.path.join(self.audio_root, self.tgt_spkembs[index]))
spkembs = torch.from_numpy(spkembs).float()
name = self.audio_names[index].replace("/", ".").replace(".wav", "") + "-" + self.tgt_audios[index].replace("/", ".").replace(".wav", "") + ".wav"
return {"id": index, "source": src_wav, "target": tgt_fbank, "spkembs": spkembs, "audio_name": name, "tgt_name": self.tgt_audios[index]}
def __len__(self):
return len(self.wav_sizes)
def collater(self, samples):
samples = [s for s in samples if s["source"] is not None]
if len(samples) == 0:
return {}
audios = [s["source"] for s in samples]
audio_sizes = [len(s) for s in audios]
audio_size = max(audio_sizes)
collated_audios, padding_mask = self.collater_audio(
audios, audio_size
)
fbanks = [s["target"] for s in samples]
fbank_sizes = [len(s) for s in fbanks]
collated_fbanks = _collate_frames(fbanks)
collated_fbanks_size = torch.tensor(fbank_sizes, dtype=torch.long)
# thin out frames for reduction factor (B, Lmax, odim) -> (B, Lmax//r, odim)
if self.reduction_factor > 1:
collated_fbanks_in = collated_fbanks[:, self.reduction_factor - 1 :: self.reduction_factor]
collated_fbanks_size_in = collated_fbanks_size.new([torch.div(olen, self.reduction_factor, rounding_mode='floor') for olen in collated_fbanks_size])
else:
collated_fbanks_in, collated_fbanks_size_in = collated_fbanks, collated_fbanks_size
prev_output_tokens = torch.cat(
[collated_fbanks_in.new_zeros((collated_fbanks_in.shape[0], 1, collated_fbanks_in.shape[2])), collated_fbanks_in[:, :-1]], dim=1
)
# make labels for stop prediction
labels = collated_fbanks.new_zeros(collated_fbanks.size(0), collated_fbanks.size(1))
for i, l in enumerate(fbank_sizes):
labels[i, l - 1 :] = 1.0
spkembs = _collate_frames([s["spkembs"] for s in samples], is_audio_input=True)
net_input = {
"source": collated_audios,
"padding_mask": padding_mask,
"prev_output_tokens": prev_output_tokens,
"tgt_lengths": collated_fbanks_size_in,
"spkembs": spkembs,
"task_name": "s2s",
}
batch = {
"id": torch.LongTensor([s["id"] for s in samples]),
"name": [s["audio_name"] for s in samples],
"tgt_name": [s["tgt_name"] for s in samples],
"net_input": net_input,
"labels": labels,
"dec_target": collated_fbanks,
"dec_target_lengths": collated_fbanks_size,
"src_lengths": torch.LongTensor(audio_sizes),
"task_name": "s2s",
"ntokens": sum(audio_sizes),
"target": collated_fbanks,
}
return batch
def collater_audio(self, audios, audio_size):
collated_audios = audios[0].new_zeros(len(audios), audio_size)
padding_mask = (
torch.BoolTensor(collated_audios.shape).fill_(False)
)
for i, audio in enumerate(audios):
diff = len(audio) - audio_size
if diff == 0:
collated_audios[i] = audio
elif diff < 0:
collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)])
padding_mask[i, diff:] = True
else:
raise Exception("Diff should not be larger than 0")
return collated_audios, padding_mask
def num_tokens(self, index):
return self.wav_sizes[index]
def size(self, index):
return self.wav_sizes[index], self.tgt_sizes[index]
@property
def sizes(self):
return np.array(self.wav_sizes)
@property
def can_reuse_epoch_itr_across_epochs(self):
"""No cache dataset if dataset is large-scale. Cache dataset for small dataset."""
return True
def ordered_indices(self):
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
order.append(self.wav_sizes)
return np.lexsort(order)[::-1]
def postprocess(self, wav, cur_sample_rate):
if wav.dim() == 2:
wav = wav.mean(-1)
assert wav.dim() == 1, wav.dim()
if cur_sample_rate != self.sample_rate:
raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}")
if self.normalize:
with torch.no_grad():
wav = F.layer_norm(wav, wav.shape)
return wav
|