Spaces:
Runtime error
Runtime error
File size: 29,004 Bytes
1547a56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------
import logging
import os.path as op
from argparse import Namespace
from collections import OrderedDict
import torch
from fairseq.data import (
Dictionary,
encoders,
PrependTokenDataset,
AppendTokenDataset,
data_utils,
StripTokenDataset,
TokenBlockDataset,
)
from fairseq.data.encoders.utils import get_whole_word_mask
from fairseq import utils
from artst.data.multitask_dataset import MultitaskDataset
from artst.data.speech_to_text_dataset import SpeechToTextDataset
from artst.data.text_to_speech_dataset import TextToSpeechDataset
from artst.data.speech_to_speech_dataset import SpeechToSpeechDataset
from artst.data.speech_to_class_dataset import SpeechToClassDataset
from artst.data.speech_dataset import SpeechPretrainDataset
from artst.data.text_dataset import TextPretrainDataset
from fairseq.data.shorten_dataset import maybe_shorten_dataset
from fairseq.tasks import LegacyFairseqTask, register_task
from fairseq.tasks.hubert_pretraining import LabelEncoder
logger = logging.getLogger(__name__)
TASK_NAME = ["s2t", "t2s", "s2s", "s2c", "pretrain"]
@register_task("artst")
class ArTSTTask(LegacyFairseqTask):
@staticmethod
def add_args(parser):
parser.add_argument("data", help="manifest root path")
parser.add_argument(
"--config-yaml",
type=str,
default="config.yaml",
help="Configuration YAML filename (under manifest root)",
)
parser.add_argument(
"--max-speech-sample-size",
default=None,
type=int,
metavar="N",
help="max speech sample size",
)
parser.add_argument(
"--min-speech-sample-size",
default=None,
type=int,
metavar="N",
help="min speech sample size",
)
parser.add_argument(
"--max-speech-positions",
default=4000,
type=int,
metavar="N",
help="max number of tokens in the source sequence",
)
parser.add_argument(
"--max-text-positions",
default=450,
type=int,
metavar="N",
help="max number of tokens in the target sequence",
)
parser.add_argument(
'--t5-task',
choices=TASK_NAME,
help='task for training'
)
parser.add_argument(
"--bpe-tokenizer",
type=str,
default=None,
help="bpe tokenizer for s2t",
)
# Speaker Identification (SID)
parser.add_argument(
"--finetune-from-modules",
default=None,
# choices=[
# "encoder-decoder", "encoder", "decoder",
# "speech_encoder_prenet-encoder-decoder-text_decoder_prenet-text_decoder_postnet", # ASR, T5 SID
# "speech_encoder_prenet-encoder-decoder-text_decoder_prenet-speaker_decoder_postnet", # SID
# "speech_encoder_prenet-encoder-decoder-speech_decoder_prenet-speech_decoder_postnet", # VC, SE
# "text_encoder_prenet-encoder-decoder-speech_decoder_prenet-speech_decoder_postnet", # TTS
# ],
help="If set, using part modules of finetune model.",
)
parser.add_argument(
"--finetune-out-of-modules",
default=None,
# choices=[
# "speaker_decoder_postnet", # SID
# "speech_decoder_postnet", # SE with reduction factor 1
# ],
help="If set, remove part modules of finetune model.",
)
# BART
parser.add_argument(
"--shorten-method",
default="none",
choices=["none", "truncate", "random_crop"],
help="if not none, shorten sequences that exceed --tokens-per-sample",
)
parser.add_argument(
"--shorten-data-split-list",
default="",
help="comma-separated list of dataset splits to apply shortening to, "
'e.g., "train,valid" (default: all dataset splits)',
)
parser.add_argument(
"--tokens-per-sample",
default=512,
type=int,
help="max number of total tokens over all segments"
" per sample for dataset",
)
parser.add_argument(
"--sample-break-mode",
default="eos",
type=str,
help="mode for breaking sentence",
)
parser.add_argument(
"--mask",
default=0.3,
type=float,
help="fraction of words/subwords that will be masked",
)
parser.add_argument(
"--mask-random",
default=0.1,
type=float,
help="instead of using [MASK], use random token this often",
)
parser.add_argument(
"--insert",
default=0.0,
type=float,
help="insert this percentage of additional random tokens",
)
parser.add_argument(
"--permute",
default=0.0,
type=float,
help="take this proportion of subwords and permute them",
)
parser.add_argument(
"--rotate",
default=0.0,
type=float,
help="rotate this proportion of inputs",
)
parser.add_argument(
"--poisson-lambda",
default=3.5,
type=float,
help="randomly shuffle sentences for this proportion of inputs",
)
parser.add_argument(
"--permute-sentences",
default=0.0,
type=float,
help="shuffle this proportion of sentences in all inputs",
)
# parser.add_argument(
# "--mask-length",
# default="span-poisson",
# type=str,
# choices=["subword", "word", "span-poisson"],
# help="mask length to choose",
# )
parser.add_argument(
"--replace-length",
default=1,
type=int,
help="when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)",
)
parser.add_argument(
"--iid-noise-target",
action="store_true",
help="whether to use t5 form target",
)
# Hubert
parser.add_argument(
"--hubert-labels",
nargs="*",
type=str,
default=['km'],
help="extension of the label files to load, frame-level labels for pre-training, and sequence-level label for fine-tuning",
)
parser.add_argument(
"--hubert-label-dir",
type=str,
default=None,
help="if set, looks for labels in this directory instead",
)
parser.add_argument(
"--sample-rate",
default=100,
type=float,
help="target sample rate. audio files will be up/down sampled to this rate",
)
parser.add_argument(
"--label-rates",
default=-1,
type=float,
help="if set, looks for labels in this directory instead",
)
parser.add_argument(
"--normalize",
action="store_true",
help="if set, normalizes input to have 0 mean and unit variance",
)
parser.add_argument(
"--enable-padding",
action="store_true",
help="pad shorter samples instead of cropping",
)
parser.add_argument(
"--pad-audio",
action="store_true",
help="pad audio to the longest one in the batch if true",
)
parser.add_argument(
"--random-crop",
action="store_true",
help="always crop from the beginning if false",
)
parser.add_argument(
"--single-target",
action="store_true",
help="if set, AddTargetDatasets outputs same keys "
"as AddTargetDataset",
)
parser.add_argument(
"--batch-ratio",
default=None,
type=str,
help="ratio of bach size for each dataset",
)
parser.add_argument(
"--sample-ratios",
default=None,
type=str,
help="ratio of sample for each dataset",
)
parser.add_argument(
"--ctc-weight",
type=float,
default=0.0,
help="ctc weight for inference",
)
parser.add_argument(
"--inference-speech",
type=bool,
default=False,
help="inference for TTS",
)
def __init__(self, args, dicts, config):
super().__init__(args)
self.dicts = dicts
self.config = config
self.t5_task = args.t5_task
# Used for filter size
if self.t5_task in ['s2t', 't2s', 's2s', 's2c']:
self.max_pos = [self.args.max_speech_positions * 256]
elif self.t5_task == 'pretrain':
self.max_pos = [self.args.max_speech_positions * 256, self.args.max_text_positions]
self.mask_idx = self.dicts["text"].add_symbol("<mask>")
# add blank token for ctc
# if args.ctc_weight > 0:
self.blank_symbol_idx = self.dicts["text"].add_symbol("<ctc_blank>")
self.blank_symbol = "<ctc_blank>"
# add mask token
if hasattr(args, "iid_noise_target") and args.iid_noise_target:
self.uni_mask_idxs = []
for i in range(600):
self.uni_mask_idxs.append(self.dicts["text"].add_symbol("<mask>" + str(i)))
self.uni_mask_idxs = torch.tensor(self.uni_mask_idxs)
self.seed = args.seed
@classmethod
def setup_task(cls, args, **kwargs):
# load dictionaries and config
dicts = OrderedDict()
if args.t5_task == 'pretrain' and not hasattr(args, "shuffle_instance"):
args.shuffle_instance = False
# Prepare config
config = None
logger.info('No config file for ' + args.t5_task)
if args.t5_task == "pretrain":
dicts["hubert"] = [Dictionary.load(f"{args.hubert_label_dir}/dict.{label}.txt") for label in args.hubert_labels]
dicts["text"] = Dictionary.load(op.join(args.data, "dict.txt"))
else:
if config is None:
dicts["text"] = Dictionary.load(op.join(args.data, "dict.txt"))
else:
dicts["text"] = Dictionary.load(op.join(args.data, config.vocab_filename))
return cls(args, dicts, config)
def build_criterion(self, args):
from fairseq import criterions
return criterions.build_criterion(args, self)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
sample_ratios = []
if self.t5_task == "s2t":
## For speech to text task
bpe_tokenizer = self.build_bpe(self.args)
manifest = f"{self.args.data}/{split}.tsv"
procs = [LabelEncoder(self.dicts["text"])]
paths = [f"{self.args.hubert_label_dir}/{split}.txt"]
# Hawau: view dataset...
logger.info(f"Manifest: {manifest}")
# logger.info(f"Paths: {paths}")
self.datasets[split] = SpeechToTextDataset(
manifest,
sample_rate=self.args.sample_rate,
label_paths=paths,
label_processors=procs,
max_keep_sample_size=self.max_pos[0] if self.args.max_speech_sample_size is None else self.args.max_speech_sample_size,
min_keep_sample_size=self.args.min_speech_sample_size,
normalize=self.args.normalize,
store_labels=False,
tgt_dict=self.dicts["text"],
tokenizer=bpe_tokenizer,
)
elif self.t5_task == "t2s":
## For text to speech task
from fairseq.data import ConcatDataset
bpe_tokenizer = self.build_bpe(self.args)
procs = [LabelEncoder(self.dicts["text"])]
t2s_datasets = [
TextToSpeechDataset(
manifest_path=f"{self.args.data}/{name}.tsv",
sample_rate=self.args.sample_rate,
label_paths=[f"{self.args.hubert_label_dir}/{name}.txt"],
label_processors=procs,
max_keep_sample_size=self.max_pos[0],
normalize=self.args.normalize,
store_labels=False,
src_dict=self.dicts["text"],
tokenizer=bpe_tokenizer,
reduction_factor=self.args.reduction_factor,
inference=self.args.inference_speech,
)
for name in split.split(",")
]
self.datasets[split] = ConcatDataset(t2s_datasets) if len(t2s_datasets) > 1 else t2s_datasets[0]
elif self.t5_task == "s2s":
manifest = f"{self.args.data}/{split}.tsv"
self.datasets[split] = SpeechToSpeechDataset(
manifest_path=manifest,
sample_rate=self.args.sample_rate,
max_keep_sample_size=self.max_pos[0] if self.args.max_speech_sample_size is None else self.args.max_speech_sample_size,
min_keep_sample_size=self.args.min_speech_sample_size,
normalize=self.args.normalize,
reduction_factor=self.args.reduction_factor,
)
elif self.t5_task == "s2c":
is_train_split = ("train" in split)
is_valid_split = ("valid" in split)
if is_train_split:
max_length = 51200
elif is_valid_split:
max_length = 76800
else:
max_length = 2560000
manifest = op.join(f"{self.args.data}", f"{split}.tsv")
procs = LabelEncoder(self.dicts["text"]) # map speaker to id
self.datasets[split] = SpeechToClassDataset(
manifest_path=manifest,
sample_rate=self.args.sample_rate,
label_processors=procs,
max_keep_sample_size=self.max_pos[0] if self.args.max_speech_sample_size is None else self.args.max_speech_sample_size,
min_keep_sample_size=self.args.min_speech_sample_size,
normalize=self.args.normalize,
tgt_dict=self.dicts["text"],
max_length=max_length
)
elif self.t5_task == "pretrain":
is_train_split = ("train" in split)
pretrain_datasets = []
speech_split, text_split = split.split('|')
## Speech pre-train
manifest = f"{self.args.data}/{speech_split}.tsv"
dicts = self.dicts["hubert"]
pad_list = [dict.pad() for dict in dicts]
eos_list = [dict.eos() for dict in dicts]
procs = [LabelEncoder(dict) for dict in dicts]
paths = [
f"{self.args.hubert_label_dir}/{speech_split}.{l}" for l in self.args.hubert_labels
]
# hubert v1: pad_audio=True, random_crop=False;
self.args.dec_weight = getattr(self.args, "dec_weight", 1.0)
pretrain_datasets.append(
SpeechPretrainDataset(
manifest,
sample_rate=self.args.sample_rate,
label_paths=paths,
label_rates=self.args.label_rates,
pad_list=pad_list,
eos_list=eos_list,
label_processors=procs,
max_keep_sample_size=None,
min_keep_sample_size=32000,
max_sample_size=self.args.max_speech_sample_size,
pad_audio=self.args.pad_audio,
normalize=self.args.normalize,
store_labels=False,
random_crop=self.args.random_crop,
single_target=self.args.single_target,
reduction_factor=self.args.reduction_factor,
)
)
sample_ratios.append(sum([pretrain_datasets[0].size(i) for i in range(len(pretrain_datasets[0]))]))
## Text pre-train
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
print(f"Loading {text_split} from data_path={data_path}")
split_path = op.join(data_path, text_split)
print(f"split_path={split_path}")
bart_dataset = data_utils.load_indexed_dataset(
split_path,
self.dicts["text"],
self.args.dataset_impl,
combine=combine,
)
if bart_dataset is None:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(text_split, split_path)
)
bart_dataset = StripTokenDataset(bart_dataset, self.dicts["text"].eos())
bart_dataset = maybe_shorten_dataset(
bart_dataset,
text_split,
self.args.shorten_data_split_list,
self.args.shorten_method,
self.args.tokens_per_sample,
self.args.seed,
)
# create continuous blocks of tokens
bart_dataset = TokenBlockDataset(
bart_dataset,
bart_dataset.sizes,
self.args.tokens_per_sample - 2, # one less for <s> and one for </s>
pad=self.dicts["text"].pad(),
eos=self.dicts["text"].eos(),
break_mode=self.args.sample_break_mode,
document_sep_len=0,
)
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
bart_dataset = PrependTokenDataset(bart_dataset, self.dicts["text"].bos())
bart_dataset = AppendTokenDataset(bart_dataset, self.dicts["text"].eos())
mask_whole_words = (
get_whole_word_mask(self.args, self.dicts["text"])
if self.args.mask_length != "subword"
else None
)
self.args.bert_weight = getattr(self.args, "bert_weight", 0.0)
pretrain_datasets.append(
TextPretrainDataset(
bart_dataset,
bart_dataset.sizes,
self.dicts["text"],
self.mask_idx,
mask_whole_words,
shuffle=self.args.shuffle_instance,
seed=self.seed,
args=self.args,
iid_noise_target=self.args.iid_noise_target,
uni_mask_idxs=self.uni_mask_idxs if self.args.iid_noise_target else None,
)
)
sample_ratios.append(sum(pretrain_datasets[1].sizes))
logger.info(
"Task: {0}, Loaded {1} samples of denoising_dataset".format(
'bart',
len(pretrain_datasets[1]),
)
)
logger.info('token ratio is ' + str(sample_ratios))
if self.args.batch_ratio is not None:
batch_ratio = eval(self.args.batch_ratio)
assert len(batch_ratio) == len(sample_ratios)
sample_ratios = [sample_ratios[i] / batch_ratio[i] for i in range(len(sample_ratios))]
else:
batch_ratio = None
max_size = max(sample_ratios)
sample_ratios = [max_size / r for r in sample_ratios]
if hasattr(self.args, "sample_ratios") and self.args.sample_ratios is not None:
sample_ratios = eval(self.args.sample_ratios)
if is_train_split:
self.datasets[split] = MultitaskDataset(
pretrain_datasets, sample_ratios, batch_ratio
)
else:
self.datasets[split] = MultitaskDataset(
pretrain_datasets, batch_ratio=batch_ratio
)
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
model.train()
model.set_num_updates(update_num)
# Junyi: not use sample_size, but normalize the loss locally
agg_loss, agg_sample_size, agg_logging_output = 0.0, 1.0, {}
agg_logging_output['sample_size'] = 1
def forward_backward(model, samples, weight=1.0):
nonlocal agg_loss, agg_logging_output
if samples is None or len(samples) == 0:
return
loss, sample_size, logging_output = criterion(model, samples)
if ignore_grad:
loss *= 0
else:
loss *= weight
loss = loss / sample_size
optimizer.backward(loss)
agg_loss += loss.detach().item()
# # TODO make summing of the sample sizes configurable
for k in logging_output:
if k == 'ntokens' or k == 'nsentences':
if k not in agg_logging_output:
agg_logging_output[k] = 0
agg_logging_output[k] += logging_output[k]
# continue
# agg_logging_output[k] += logging_output[k]
# agg_logging_output[task_name] += logging_output[k]
agg_logging_output[samples['task_name']] = logging_output
forward_backward(model, sample)
agg_logging_output["loss"] = agg_loss
return agg_loss, agg_sample_size, agg_logging_output
def valid_step(self, sample, model, criterion):
model.eval()
with torch.no_grad():
from collections import defaultdict
agg_loss, agg_sample_size, agg_logging_output = 0.0, 1.0, defaultdict(float)
agg_logging_output['sample_size'] = 1
loss, sample_size, logging_output = criterion(model, sample)
loss = loss / sample_size
# agg_loss += loss.data.item() if isinstance(loss, torch.Tensor) else loss
agg_loss += loss.item() if isinstance(loss, torch.Tensor) else loss
agg_logging_output[sample['task_name']] = logging_output
agg_logging_output["loss"] = agg_loss
return agg_loss, agg_sample_size, agg_logging_output
@property
def target_dictionary(self):
return self.dicts["text"]
@property
def source_dictionary(self):
return None
def build_model(self, args):
try:
args.input_feat_per_channel = self.config.input_feat_per_channel
args.input_channels = self.config.input_channels
except Exception as e:
args.input_feat_per_channel = 80
args.input_channels = 1
logger.info(f"Cannot set input_feat_per_channel, input_channels, since: ")
logger.warn(e)
logger.info(f"Set to: {args.input_feat_per_channel} and {args.input_channels}")
args.speech_odim = args.input_feat_per_channel * args.input_channels
args.label_rates = self.args.label_rates
args.sample_rate = self.args.sample_rate
self.args.reduction_factor = args.reduction_factor
return super(ArTSTTask, self).build_model(args)
def build_generator(
self,
models,
args,
seq_gen_cls=None,
extra_gen_cls_kwargs=None,
):
from artst.sequence_generator import SequenceGenerator
extra_gen_cls_kwargs = {
"ctc_weight": self.args.ctc_weight,
**extra_gen_cls_kwargs
}
return super().build_generator(
models, args, seq_gen_cls=SequenceGenerator, extra_gen_cls_kwargs=extra_gen_cls_kwargs
)
def build_tokenizer(self, args):
if self.config is None:
logger.info(f"pre-tokenizer: None")
return encoders.build_tokenizer(Namespace(**{"tokenizer": None}))
else:
logger.info(f"pre-tokenizer: {self.config.pre_tokenizer}")
return encoders.build_tokenizer(Namespace(**self.config.pre_tokenizer))
def build_bpe(self, args):
if self.config is not None:
logger.info(f"tokenizer: {self.config.bpe_tokenizer}")
return encoders.build_bpe(Namespace(**self.config.bpe_tokenizer))
else:
logger.info(f"tokenizer: {self.args.bpe_tokenizer}")
return encoders.build_bpe(Namespace(**{"bpe": "sentencepiece", "sentencepiece_model": self.args.bpe_tokenizer}))
def generate_class(self, models, net_input, prefix_tokens, **kwargs):
with torch.no_grad():
encoder_input = {
k: v for k, v in net_input.items() if k != "prev_output_tokens" and k != "task_name"
}
encoder_input.update(kwargs)
encoder_input.update({"prev_output_tokens": prefix_tokens})
return models[0].generate_class(**encoder_input)
def generate_speech(self, models, net_input, **kwargs):
with torch.no_grad():
encoder_input = {
k: v for k, v in net_input.items() if k != "prev_output_tokens" and k != "task_name"
}
encoder_input.update(kwargs)
return models[0].generate_speech(**encoder_input)
def inference_t2s(
self, models, sample
):
with torch.no_grad():
xs = sample['net_input']['src_tokens']
spkemb = sample['net_input']['spkembs']
return models[0].inference(xs, spkemb)
def inference_s2s(
self, models, sample, force_equal_length=False
):
with torch.no_grad():
x = sample['net_input']['src_tokens']
xlen = sample['net_input']['src_lengths']
spkemb = sample['net_input']['spkembs']
prev_output_tokens = sample['net_input']['prev_output_tokens']
padding_mask = sample['net_input']['padding_mask']
tgt_lengths = sample['net_input']['tgt_lengths']
return models[0].inference_s2s(x, xlen, spkemb, prev_output_tokens, tgt_lengths, force_equal_length=force_equal_length, padding_mask=padding_mask)
def inference_s2c(
self, models, sample
):
with torch.no_grad():
x = sample['net_input']['src_tokens']
xlen = sample['net_input']['src_lengths']
prev_output_tokens = sample['net_input']['prev_output_tokens']
padding_mask = sample['net_input']['padding_mask']
assert prev_output_tokens.size(1) == 1, prev_output_tokens.size()
return models[0].inference_s2c(x, xlen, prev_output_tokens, padding_mask=padding_mask)
def filter_indices_by_size(
self, indices, dataset, max_positions=None, ignore_invalid_inputs=False
):
"""
Filter examples that are too large
Args:
indices (np.array): original array of sample indices
dataset (~fairseq.data.FairseqDataset): dataset to batch
max_positions (optional): max sentence length supported by the
model (default: None).
ignore_invalid_inputs (bool, optional): don't raise Exception for
sentences that are too long (default: False).
Returns:
np.array: array of filtered sample indices
"""
indices, ignored = dataset.filter_indices_by_size(
indices,
self.max_pos
)
return indices
|