File size: 10,443 Bytes
8b33290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------

import logging
import os
from typing import Any, List, Optional

import librosa
import numpy as np
import torch
import torch.nn.functional as F
from fairseq.data.fairseq_dataset import FairseqDataset

logger = logging.getLogger(__name__)

def _collate_frames(
    frames: List[torch.Tensor], is_audio_input: bool = False
):
    """
    Convert a list of 2D frames into a padded 3D tensor
    Args:
        frames (list): list of 2D frames of size L[i]*f_dim. Where L[i] is
            length of i-th frame and f_dim is static dimension of features
    Returns:
        3D tensor of size len(frames)*len_max*f_dim where len_max is max of L[i]
    """
    max_len = max(frame.size(0) for frame in frames)
    if is_audio_input:
        out = frames[0].new_zeros((len(frames), max_len))
    else:
        out = frames[0].new_zeros((len(frames), max_len, frames[0].size(1)))
    for i, v in enumerate(frames):
        out[i, : v.size(0)] = v
    return out

def load_audio(manifest_path, max_keep, min_keep):
    """manifest tsv: src_wav, src_nframe, tgt_wav, tgt_nframe, tgt_spkemb"""
    n_long, n_short = 0, 0
    src_names, tgt_names, inds, sizes, tgt_sizes, spk_embeds = [], [], [], [], [], []
    with open(manifest_path) as f:
        root = f.readline().strip()
        for ind, line in enumerate(f):
            items = line.strip().split("\t")
            assert len(items) >= 2, line
            sz = int(items[1])
            if min_keep is not None and sz < min_keep:
                n_short += 1
            elif max_keep is not None and sz > max_keep:
                n_long += 1
            else:
                src_names.append(items[0])
                tgt_names.append(items[2])
                tgt_sizes.append(items[3])
                spk_embeds.append(items[4])
                inds.append(ind)
                sizes.append(sz)
    tot = ind + 1
    logger.info(
        (
            f"max_keep={max_keep}, min_keep={min_keep}, "
            f"loaded {len(src_names)}, skipped {n_short} short and {n_long} long, "
            f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}"
        )
    )
    return root, src_names, inds, tot, sizes, tgt_names, tgt_sizes, spk_embeds


def logmelfilterbank(
    audio,
    sampling_rate,
    fft_size=1024,
    hop_size=256,
    win_length=None,
    window="hann",
    num_mels=80,
    fmin=80,
    fmax=7600,
    eps=1e-10,
):
    """Compute log-Mel filterbank feature. 
    (https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/parallel_wavegan/bin/preprocess.py)

    Args:
        audio (ndarray): Audio signal (T,).
        sampling_rate (int): Sampling rate.
        fft_size (int): FFT size.
        hop_size (int): Hop size.
        win_length (int): Window length. If set to None, it will be the same as fft_size.
        window (str): Window function type.
        num_mels (int): Number of mel basis.
        fmin (int): Minimum frequency in mel basis calculation.
        fmax (int): Maximum frequency in mel basis calculation.
        eps (float): Epsilon value to avoid inf in log calculation.

    Returns:
        ndarray: Log Mel filterbank feature (#frames, num_mels).

    """
    # get amplitude spectrogram
    x_stft = librosa.stft(audio, n_fft=fft_size, hop_length=hop_size,
                          win_length=win_length, window=window, pad_mode="reflect")
    spc = np.abs(x_stft).T  # (#frames, #bins)

    # get mel basis
    fmin = 0 if fmin is None else fmin
    fmax = sampling_rate / 2 if fmax is None else fmax
    mel_basis = librosa.filters.mel(sr=sampling_rate, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax)

    return np.log10(np.maximum(eps, np.dot(spc, mel_basis.T)))


class SpeechToSpeechDataset(FairseqDataset):
    def __init__(
        self,
        manifest_path: str,
        sample_rate: float,
        max_keep_sample_size: Optional[int] = None,
        min_keep_sample_size: Optional[int] = None,
        shuffle: bool = True,
        normalize: bool = False,
        reduction_factor: int = 1,
    ):
        self.audio_root, self.audio_names, inds, tot, self.wav_sizes, self.tgt_audios, self.tgt_sizes, self.tgt_spkembs = load_audio(
            manifest_path, max_keep_sample_size, min_keep_sample_size
        )
        self.sample_rate = sample_rate
        self.shuffle = shuffle

        self.normalize = normalize
        self.reduction_factor = reduction_factor
        logger.info(
            f"reduction_factor={reduction_factor}, normalize={normalize}"
        )

    def get_audio(self, index):
        import soundfile as sf

        wav_fbank = []
        for name in [self.audio_names[index], self.tgt_audios[index]]:
            wav_path = os.path.join(self.audio_root, name)
            wav, cur_sample_rate = sf.read(wav_path)
            wav = torch.from_numpy(wav).float()
            fbank = logmelfilterbank(
                wav.view(-1).cpu().numpy(), 16000
            )
            fbank = torch.from_numpy(fbank).float()
            wav = self.postprocess(wav, cur_sample_rate)
            wav_fbank.append(wav)
            wav_fbank.append(fbank)
        src_wav, src_fbank, tgt_wav, tgt_fbank = wav_fbank
        return src_wav, src_fbank, tgt_wav, tgt_fbank

    def __getitem__(self, index):
        src_wav, src_fbank, tgt_wav, tgt_fbank = self.get_audio(index)
        spkembs = np.load(os.path.join(self.audio_root, self.tgt_spkembs[index]))
        spkembs = torch.from_numpy(spkembs).float()
        name = self.audio_names[index].replace("/", ".").replace(".wav", "") + "-" + self.tgt_audios[index].replace("/", ".").replace(".wav", "") + ".wav"
        return {"id": index, "source": src_wav, "target": tgt_fbank, "spkembs": spkembs, "audio_name": name, "tgt_name": self.tgt_audios[index]}
    
    def __len__(self):
        return len(self.wav_sizes)

    def collater(self, samples):
        samples = [s for s in samples if s["source"] is not None]
        if len(samples) == 0:
            return {}

        audios = [s["source"] for s in samples]
        audio_sizes = [len(s) for s in audios]

        audio_size = max(audio_sizes)
        collated_audios, padding_mask = self.collater_audio(
            audios, audio_size
        )

        fbanks = [s["target"] for s in samples]
        fbank_sizes = [len(s) for s in fbanks]

        collated_fbanks = _collate_frames(fbanks)
        collated_fbanks_size = torch.tensor(fbank_sizes, dtype=torch.long)

        # thin out frames for reduction factor (B, Lmax, odim) ->  (B, Lmax//r, odim)
        if self.reduction_factor > 1:
            collated_fbanks_in = collated_fbanks[:, self.reduction_factor - 1 :: self.reduction_factor]
            collated_fbanks_size_in = collated_fbanks_size.new([torch.div(olen, self.reduction_factor, rounding_mode='floor') for olen in collated_fbanks_size])
        else:
            collated_fbanks_in, collated_fbanks_size_in = collated_fbanks, collated_fbanks_size

        prev_output_tokens = torch.cat(
            [collated_fbanks_in.new_zeros((collated_fbanks_in.shape[0], 1, collated_fbanks_in.shape[2])), collated_fbanks_in[:, :-1]], dim=1
        )

        # make labels for stop prediction
        labels = collated_fbanks.new_zeros(collated_fbanks.size(0), collated_fbanks.size(1))
        for i, l in enumerate(fbank_sizes):
            labels[i, l - 1 :] = 1.0

        spkembs = _collate_frames([s["spkembs"] for s in samples], is_audio_input=True)

        net_input = {
            "source": collated_audios,
            "padding_mask": padding_mask,
            "prev_output_tokens": prev_output_tokens,
            "tgt_lengths": collated_fbanks_size_in,
            "spkembs": spkembs,
            "task_name": "s2s",
        }
        batch = {
            "id": torch.LongTensor([s["id"] for s in samples]),
            "name": [s["audio_name"] for s in samples],
            "tgt_name": [s["tgt_name"] for s in samples],
            "net_input": net_input,
            "labels": labels,
            "dec_target": collated_fbanks,
            "dec_target_lengths": collated_fbanks_size,
            "src_lengths": torch.LongTensor(audio_sizes),
            "task_name": "s2s",
            "ntokens": sum(audio_sizes),
            "target": collated_fbanks,
        }

        return batch

    def collater_audio(self, audios, audio_size):
        collated_audios = audios[0].new_zeros(len(audios), audio_size)
        padding_mask = (
            torch.BoolTensor(collated_audios.shape).fill_(False)
        )
        for i, audio in enumerate(audios):
            diff = len(audio) - audio_size
            if diff == 0:
                collated_audios[i] = audio
            elif diff < 0:
                collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)])
                padding_mask[i, diff:] = True
            else:
                raise Exception("Diff should not be larger than 0")
        return collated_audios, padding_mask


    def num_tokens(self, index):
        return self.wav_sizes[index]

    def size(self, index):
        return self.wav_sizes[index], self.tgt_sizes[index]

    @property
    def sizes(self):
        return np.array(self.wav_sizes)

    @property
    def can_reuse_epoch_itr_across_epochs(self):
        """No cache dataset if dataset is large-scale. Cache dataset for small dataset."""
        return True

    def ordered_indices(self):
        if self.shuffle:
            order = [np.random.permutation(len(self))]
        else:
            order = [np.arange(len(self))]

        order.append(self.wav_sizes)
        return np.lexsort(order)[::-1]

    def postprocess(self, wav, cur_sample_rate):
        if wav.dim() == 2:
            wav = wav.mean(-1)
        assert wav.dim() == 1, wav.dim()

        if cur_sample_rate != self.sample_rate:
            raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}")

        if self.normalize:
            with torch.no_grad():
                wav = F.layer_norm(wav, wav.shape)
        return wav