File size: 8,800 Bytes
8b33290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------

import logging
import os
from typing import Any, List, Optional

import numpy as np

import torch
import torch.nn.functional as F
from fairseq.data import data_utils, Dictionary
from fairseq.data.fairseq_dataset import FairseqDataset

logger = logging.getLogger(__name__)


def load_audio(manifest_path, max_keep, min_keep):
    """manifest tsv: wav_path, wav_nframe, wav_class

    Args
        manifest_path: str
        max_keep: int
        min_keep: int
    
    Return
        root, names, inds, tot, sizes, classes
    """
    n_long, n_short = 0, 0
    names, inds, sizes, classes = [], [], [], []
    with open(manifest_path) as f:
        root = f.readline().strip()
        for ind, line in enumerate(f):
            items = line.strip().split("\t")
            assert len(items) >= 2, line
            sz = int(items[1])
            if min_keep is not None and sz < min_keep:
                n_short += 1
            elif max_keep is not None and sz > max_keep:
                n_long += 1
            else:
                names.append(items[0])
                if len(items) > 2:
                    classes.append(items[2])
                inds.append(ind)
                sizes.append(sz)
    tot = ind + 1
    logger.info(
        (
            f"max_keep={max_keep}, min_keep={min_keep}, "
            f"loaded {len(names)}, skipped {n_short} short and {n_long} long, "
            f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}"
        )
    )
    if len(classes) == 0:
        logger.warn("no classes loaded only if inference")
    return root, names, inds, tot, sizes, classes


def sample_from_feature(x: np.ndarray, max_segment_length: int = 300):
    """Load a segment within 300-400/51200-76800 frames or the corresponding samples from a utterance.

    Args:
        x (np.ndarray): feature or waveform (frames[, features]), e.g., log mel filter bank or waveform
        max_segment_length (int, optional): maximum segment length. Defaults to 400.

    Returns:
        np.ndarray: segmented features
    """
    if len(x) <= max_segment_length:
        return x
    start = np.random.randint(0, x.shape[0] - max_segment_length)
    return x[start: start + max_segment_length]


class SpeechToClassDataset(FairseqDataset):
    def __init__(
        self,
        manifest_path: str,
        sample_rate: float,
        label_processors: Optional[List[Any]] = None,
        max_keep_sample_size: Optional[int] = None,
        min_keep_sample_size: Optional[int] = None,
        shuffle: bool = True,
        normalize: bool = False,
        tgt_dict: Optional[Dictionary] = None,
        max_length: Optional[int] = None
    ):
        self.audio_root, self.audio_names, inds, tot, self.wav_sizes, self.wav_classes = load_audio(
            manifest_path, max_keep_sample_size, min_keep_sample_size
        )
        self.sample_rate = sample_rate
        self.shuffle = shuffle

        self.label_processors = label_processors

        self.normalize = normalize
        self.tgt_dict = tgt_dict
        self.max_length = max_length
        logger.info(
            f"max_length={max_length}, normalize={normalize}"
        )

    def get_audio(self, index):
        import soundfile as sf

        wav_path = os.path.join(self.audio_root, self.audio_names[index])
        wav, cur_sample_rate = sf.read(wav_path)
        if self.max_length is not None:
            wav = sample_from_feature(wav, self.max_length)
        wav = torch.from_numpy(wav).float()
        wav = self.postprocess(wav, cur_sample_rate)
        return wav

    def get_label(self, index):
        label = self.wav_classes[index]

        if self.label_processors is not None:
            label = self.label_processors(label)
        return label

    def __getitem__(self, index):
        wav = self.get_audio(index)
        label = None
        if len(self.wav_classes) == len(self.audio_names):
            label = self.get_label(index)
        return {"id": index, "source": wav, "label": label}

    def __len__(self):
        return len(self.wav_sizes)

    def collater(self, samples):
        samples = [s for s in samples if s["source"] is not None]
        if len(samples) == 0:
            return {}

        audios = [s["source"] for s in samples]
        audio_sizes = [len(s) for s in audios]

        audio_size = max(audio_sizes)
        collated_audios, padding_mask = self.collater_audio(
            audios, audio_size
        )

        decoder_label = None
        decoder_target = None
        decoder_target_lengths = None
        if samples[0]["label"] is not None:
            targets_by_label = [
                [s["label"] for s in samples]
            ]
            targets_list, lengths_list, ntokens_list = self.collater_label(targets_by_label)

            decoder_label = [
                (targets_list[0][i, :lengths_list[0][i]]).long()
                for i in range(targets_list[0].size(0))
            ]

            decoder_target = data_utils.collate_tokens(
                decoder_label,
                self.tgt_dict.pad(),
                self.tgt_dict.eos(),
                left_pad=False,
                move_eos_to_beginning=False,
            )
            decoder_target_lengths = torch.tensor(
                [x.size(0) for x in decoder_label], dtype=torch.long
            )
        prev_output_tokens = data_utils.collate_tokens(
            [torch.LongTensor([-1]) for _ in samples],
            self.tgt_dict.pad(),
            self.tgt_dict.eos(),
            left_pad=False,
            move_eos_to_beginning=True,
        )

        net_input = {
            "source": collated_audios, 
            "padding_mask": padding_mask,
            "prev_output_tokens": prev_output_tokens,
            "task_name": "s2c",
        }
        batch = {
            "id": torch.LongTensor([s["id"] for s in samples]),
            "net_input": net_input,
            "target": decoder_target,
            "target_lengths": decoder_target_lengths,
            "task_name": "s2c",
            "ntokens": len(samples),
        }

        return batch

    def collater_audio(self, audios, audio_size):
        collated_audios = audios[0].new_zeros(len(audios), audio_size)
        padding_mask = (
            torch.BoolTensor(collated_audios.shape).fill_(False)
        )
        for i, audio in enumerate(audios):
            diff = len(audio) - audio_size
            if diff == 0:
                collated_audios[i] = audio
            elif diff < 0:
                collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)])
                padding_mask[i, diff:] = True
            else:
                raise Exception("Diff should not be larger than 0")
        return collated_audios, padding_mask

    def collater_seq_label(self, targets, pad):
        lengths = torch.LongTensor([len(t) for t in targets])
        ntokens = lengths.sum().item()
        targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False)
        return targets, lengths, ntokens

    def collater_label(self, targets_by_label):
        targets_list, lengths_list, ntokens_list = [], [], []
        itr = zip(targets_by_label, [self.tgt_dict.pad()])
        for targets, pad in itr:
            targets, lengths, ntokens = self.collater_seq_label(targets, pad)
            targets_list.append(targets)
            lengths_list.append(lengths)
            ntokens_list.append(ntokens)
        return targets_list, lengths_list, ntokens_list

    def num_tokens(self, index):
        return self.size(index)

    def size(self, index):
        return self.wav_sizes[index]

    @property
    def sizes(self):
        return np.array(self.wav_sizes)

    def ordered_indices(self):
        if self.shuffle:
            order = [np.random.permutation(len(self))]
        else:
            order = [np.arange(len(self))]

        order.append(self.wav_sizes)
        return np.lexsort(order)[::-1]

    def postprocess(self, wav, cur_sample_rate):
        if wav.dim() == 2:
            wav = wav.mean(-1)
        assert wav.dim() == 1, wav.dim()

        if cur_sample_rate != self.sample_rate:
            raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}")

        if self.normalize:
            with torch.no_grad():
                wav = F.layer_norm(wav, wav.shape)
        return wav