File size: 11,101 Bytes
d06e453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
#sentence_analyzer.py
import re
import logging
from typing import List, Tuple
from datetime import datetime
import os
import unicodedata
import nltk
# Download the Punkt tokenizer if not already downloaded
nltk.download('punkt', quiet=True)
from nltk.tokenize import sent_tokenize
class SentenceAnalyzer:
def __init__(self):
self._setup_logger()
# Sentence types and their corresponding flags
self.SENTENCE_TYPES = ['exclamation', 'question', 'statement', 'ellipsis', 'quote', 'emphasis']
self.FLAGS = {
'exclamation': 'EXCL',
'question': 'QUES',
'statement': 'STMT',
'ellipsis': 'ELIP',
'quote': 'QUOT',
'emphasis': 'EMPH'
}
self.logger.info("SentenceAnalyzer initialized successfully")
def _setup_logger(self):
"""Set up logging configuration."""
try:
# Create logs directory if it doesn't exist
os.makedirs('logs', exist_ok=True)
# Get current date for log file name
current_date = datetime.now().strftime('%Y-%m-%d')
log_file = f'logs/sentence_analyzer_{current_date}.log'
# Create and configure logger
self.logger = logging.getLogger('SentenceAnalyzer')
self.logger.setLevel(logging.DEBUG) # Set to DEBUG to capture all logs
# Clear existing handlers to avoid duplicates
if self.logger.handlers:
self.logger.handlers.clear()
# Create file handler
file_handler = logging.FileHandler(log_file, encoding='utf-8')
file_handler.setLevel(logging.DEBUG)
# Create console handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
# Create formatter
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
# Add handlers to logger
self.logger.addHandler(file_handler)
self.logger.addHandler(console_handler)
self.logger.debug("Logger set up successfully")
except Exception as e:
print(f"Error setting up logger: {str(e)}")
raise
def split_into_sentences(self, text: str) -> List[str]:
"""Split text into sentences using NLTK's sentence tokenizer."""
if not text:
return []
self.logger.debug("Starting sentence splitting")
# Normalize Unicode characters
text = unicodedata.normalize('NFC', text)
self.logger.debug("Normalized text using NFC")
# Remove page numbers and chapter titles (common in PDFs)
text = re.sub(r'Page \d+|Chapter \d+:.*', '', text)
self.logger.debug("Removed page numbers and chapter titles")
# Replace hyphenated line breaks with just the word
text = re.sub(r'-\s+\n', '', text)
text = re.sub(r'-\s+', '', text)
self.logger.debug("Replaced hyphenated line breaks")
# Replace multiple newlines and carriage returns with a space
text = re.sub(r'[\r\n]+', ' ', text)
self.logger.debug("Replaced multiple newlines with a space")
# Replace multiple spaces with a single space
text = re.sub(r'\s+', ' ', text).strip()
self.logger.debug("Normalized whitespace")
# Use NLTK's sent_tokenize to split into sentences
sentences = sent_tokenize(text)
self.logger.debug(f"Split text into {len(sentences)} sentences using NLTK")
# Clean up sentences
sentences = [sentence.strip() for sentence in sentences if sentence.strip()]
self.logger.info(f"Split text into {len(sentences)} sentences after cleanup")
return sentences
def analyze_sentence(self, sentence: str) -> Tuple[str, str, str]:
"""Analyze a sentence and return its type, color (handled by CSS), and flag."""
if not sentence:
return ('statement', '', self.FLAGS['statement'])
sentence = sentence.strip()
self.logger.debug(f"Analyzing sentence: '{sentence}'")
# Function to check for complete quotes
def has_complete_quote(text):
quote_pairs = [
('"', '"'),
("'", "'"),
('“', '”'),
('‘', '’'),
('«', '»')
]
text = text.strip()
for open_quote, close_quote in quote_pairs:
if text.startswith(open_quote) and text.endswith(close_quote):
# Ensure that the quotes are balanced
if text.count(open_quote) == text.count(close_quote):
self.logger.debug(f"Sentence starts and ends with matching quotes: {open_quote}{close_quote}")
return True
return False
# Check if the entire sentence is enclosed in matching quotes
if has_complete_quote(sentence):
sent_type = 'quote'
self.logger.debug("Sentence classified as 'quote'")
# Check for emphasis
elif re.search(r'\*[^*]+\*', sentence):
sent_type = 'emphasis'
self.logger.debug("Sentence classified as 'emphasis'")
# Check regular sentence types
elif sentence.endswith(('!', '!')):
sent_type = 'exclamation'
self.logger.debug("Sentence classified as 'exclamation'")
elif sentence.endswith(('?', '?')):
sent_type = 'question'
self.logger.debug("Sentence classified as 'question'")
elif sentence.endswith('…') or sentence.endswith('...'):
sent_type = 'ellipsis'
self.logger.debug("Sentence classified as 'ellipsis'")
else:
sent_type = 'statement'
self.logger.debug("Sentence classified as 'statement'")
color = '' # Color is now handled by CSS classes
self.logger.debug(f"Sentence type: {sent_type}, Flag: {self.FLAGS[sent_type]}")
return (sent_type, color, self.FLAGS[sent_type])
def clean_sentence(self, sentence: str) -> str:
"""Remove special characters from the sentence that might confuse TTS models."""
# Define the pattern to match unwanted special characters
pattern = r'[^\w\s.,!?\'"“”‘’«»\-—()]'
cleaned_sentence = re.sub(pattern, '', sentence)
self.logger.debug(f"Cleaned sentence: '{cleaned_sentence}'")
return cleaned_sentence
def process_text_interactive(self, text: str) -> str:
"""Process the text and return HTML-formatted output with interactive sentences."""
self.logger.info("Starting interactive text processing")
if not text:
self.logger.warning("Empty text received")
return ''
try:
# Normalize Unicode characters
text = unicodedata.normalize('NFC', text)
self.logger.debug("Normalized text using NFC in interactive processing")
sentences = self.split_into_sentences(text)
formatted_output = []
for index, sentence in enumerate(sentences, 1):
sent_type, color, flag = self.analyze_sentence(sentence)
# Updated HTML to include class for sentence type and data attribute for indexing
formatted_sentence = f'''
<div class="sentence-row {sent_type}">
<div class="sentence-number">{index}.</div>
<div class="sentence-content">
{sentence}
</div>
<div class="sentence-type">{sent_type.capitalize()}</div>
</div>
'''
formatted_output.append(formatted_sentence)
self.logger.info(f"Processed sentence {index}/{len(sentences)} - Type: {sent_type}")
self.logger.debug(f"Formatted HTML for sentence {index}: {formatted_sentence}")
result = ''.join(formatted_output)
self.logger.info("Text processing completed successfully")
return result
except Exception as e:
self.logger.error(f"Error processing text: {str(e)}", exc_info=True)
return f'<span style="color: red;">Error processing text: {str(e)}</span>'
def prepare_text_for_tts(self, sentences: List[str]) -> str:
"""Prepare the text for TTS by cleaning special characters from each sentence."""
cleaned_sentences = [self.clean_sentence(sentence) for sentence in sentences]
tts_text = ' '.join(cleaned_sentences)
self.logger.debug(f"Prepared text for TTS: '{tts_text}'")
return tts_text
def process_text(self, text: str) -> str:
"""Legacy method for non-interactive processing. Kept for compatibility."""
self.logger.info("Starting text processing (legacy method)")
if not text:
self.logger.warning("Empty text received")
return ""
try:
# Normalize Unicode characters
text = unicodedata.normalize('NFC', text)
self.logger.debug("Normalized text using NFC in legacy processing")
sentences = self.split_into_sentences(text)
formatted_output = []
for index, sentence in enumerate(sentences, 1):
sent_type, _, flag = self.analyze_sentence(sentence)
# Color is now handled by CSS classes
formatted_sentence = (
f'<span class="{sent_type}" '
f'data-flag="{flag}" '
f'title="Sentence type: {sent_type}">'
f'{sentence}</span>'
)
formatted_output.append(formatted_sentence)
self.logger.info(f"Processed sentence {index}/{len(sentences)} - Type: {sent_type}")
self.logger.debug(f"Formatted HTML for sentence {index}: {formatted_sentence}")
result = " ".join(formatted_output)
self.logger.info("Text processing completed successfully")
return result
except Exception as e:
self.logger.error(f"Error processing text: {str(e)}", exc_info=True)
return f'<span style="color: red;">Error processing text: {str(e)}</span>'
|