Spaces:
Sleeping
Sleeping
File size: 16,267 Bytes
31726e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
#!/bin/env python
"""Train a GAN.
Usage:
* Train a MNIST model:
`python train_gan.py`
* Train a Quickdraw model:
`python train_gan.py --task quickdraw`
"""
import argparse
import os
import numpy as np
import torch as th
from torch.utils.data import DataLoader
import ttools
import ttools.interfaces
import losses
import data
import models
import pydiffvg
LOG = ttools.get_logger(__name__)
BASE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir)
OUTPUT = os.path.join(BASE_DIR, "results")
class Callback(ttools.callbacks.ImageDisplayCallback):
"""Simple callback that visualize images."""
def visualized_image(self, batch, step_data, is_val=False):
if is_val:
return
gen = step_data["gen_image"][:16].detach()
ref = step_data["gt_image"][:16].detach()
# tensor to visualize, concatenate images
vizdata = th.cat([ref, gen], 2)
vector = step_data["vector_image"]
if vector is not None:
vector = vector[:16].detach()
vizdata = th.cat([vizdata, vector], 2)
vizdata = (vizdata + 1.0 ) * 0.5
viz = th.clamp(vizdata, 0, 1)
return viz
def caption(self, batch, step_data, is_val=False):
if step_data["vector_image"] is not None:
s = "top: real, middle: raster, bottom: vector"
else:
s = "top: real, bottom: fake"
return s
class Interface(ttools.ModelInterface):
def __init__(self, generator, vect_generator,
discriminator, vect_discriminator,
lr=1e-4, lr_decay=0.9999,
gradient_penalty=10,
wgan_gp=False,
raster_resolution=32, device="cpu", grad_clip=1.0):
super(Interface, self).__init__()
self.wgan_gp = wgan_gp
self.w_gradient_penalty = gradient_penalty
self.n_critic = 1
if self.wgan_gp:
self.n_critic = 5
self.grad_clip = grad_clip
self.raster_resolution = raster_resolution
self.gen = generator
self.vect_gen = vect_generator
self.discrim = discriminator
self.vect_discrim = vect_discriminator
self.device = device
self.gen.to(self.device)
self.discrim.to(self.device)
beta1 = 0.5
beta2 = 0.9
self.gen_opt = th.optim.Adam(
self.gen.parameters(), lr=lr, betas=(beta1, beta2))
self.discrim_opt = th.optim.Adam(
self.discrim.parameters(), lr=lr, betas=(beta1, beta2))
self.schedulers = [
th.optim.lr_scheduler.ExponentialLR(self.gen_opt, lr_decay),
th.optim.lr_scheduler.ExponentialLR(self.discrim_opt, lr_decay),
]
self.optimizers = [self.gen_opt, self.discrim_opt]
if self.vect_gen is not None:
assert self.vect_discrim is not None
self.vect_gen.to(self.device)
self.vect_discrim.to(self.device)
self.vect_gen_opt = th.optim.Adam(
self.vect_gen.parameters(), lr=lr, betas=(beta1, beta2))
self.vect_discrim_opt = th.optim.Adam(
self.vect_discrim.parameters(), lr=lr, betas=(beta1, beta2))
self.schedulers += [
th.optim.lr_scheduler.ExponentialLR(self.vect_gen_opt,
lr_decay),
th.optim.lr_scheduler.ExponentialLR(self.vect_discrim_opt,
lr_decay),
]
self.optimizers += [self.vect_gen_opt, self.vect_discrim_opt]
# include loss on alpha
self.im_loss = losses.MultiscaleMSELoss(channels=4).to(self.device)
self.iter = 0
self.cross_entropy = th.nn.BCEWithLogitsLoss()
self.mse = th.nn.MSELoss()
def _gradient_penalty(self, discrim, fake, real):
bs = real.size(0)
epsilon = th.rand(bs, 1, 1, 1, device=real.device)
epsilon = epsilon.expand_as(real)
interpolation = epsilon * real.data + (1 - epsilon) * fake.data
interpolation = th.autograd.Variable(interpolation, requires_grad=True)
interpolation_logits = discrim(interpolation)
grad_outputs = th.ones(interpolation_logits.size(), device=real.device)
gradients = th.autograd.grad(outputs=interpolation_logits,
inputs=interpolation,
grad_outputs=grad_outputs,
create_graph=True, retain_graph=True)[0]
gradients = gradients.view(bs, -1)
gradients_norm = th.sqrt(th.sum(gradients ** 2, dim=1) + 1e-12)
# [Tanh-Tung 2019] https://openreview.net/pdf?id=ByxPYjC5KQ
return self.w_gradient_penalty * ((gradients_norm - 0) ** 2).mean()
# return self.w_gradient_penalty * ((gradients_norm - 1) ** 2).mean()
def _discriminator_step(self, discrim, opt, fake, real):
"""Try to classify fake as 0 and real as 1."""
opt.zero_grad()
# no backprop to gen
fake = fake.detach()
fake_pred = discrim(fake)
real_pred = discrim(real)
if self.wgan_gp:
gradient_penalty = self._gradient_penalty(discrim, fake, real)
loss_d = fake_pred.mean() - real_pred.mean() + gradient_penalty
gradient_penalty = gradient_penalty.item()
else:
fake_loss = self.cross_entropy(fake_pred, th.zeros_like(fake_pred))
real_loss = self.cross_entropy(real_pred, th.ones_like(real_pred))
# fake_loss = self.mse(fake_pred, th.zeros_like(fake_pred))
# real_loss = self.mse(real_pred, th.ones_like(real_pred))
loss_d = 0.5*(fake_loss + real_loss)
gradient_penalty = None
loss_d.backward()
nrm = th.nn.utils.clip_grad_norm_(
discrim.parameters(), self.grad_clip)
if nrm > self.grad_clip:
LOG.debug("Clipped discriminator gradient (%.5f) to %.2f",
nrm, self.grad_clip)
opt.step()
return loss_d.item(), gradient_penalty
def _generator_step(self, gen, discrim, opt, fake):
"""Try to classify fake as 1."""
opt.zero_grad()
fake_pred = discrim(fake)
if self.wgan_gp:
loss_g = -fake_pred.mean()
else:
loss_g = self.cross_entropy(fake_pred, th.ones_like(fake_pred))
# loss_g = self.mse(fake_pred, th.ones_like(fake_pred))
loss_g.backward()
# clip gradients
nrm = th.nn.utils.clip_grad_norm_(
gen.parameters(), self.grad_clip)
if nrm > self.grad_clip:
LOG.debug("Clipped generator gradient (%.5f) to %.2f",
nrm, self.grad_clip)
opt.step()
return loss_g.item()
def training_step(self, batch):
im = batch
im = im.to(self.device)
z = self.gen.sample_z(im.shape[0], device=self.device)
generated = self.gen(z)
vect_generated = None
if self.vect_gen is not None:
vect_generated = self.vect_gen(z)
loss_g = None
loss_d = None
loss_g_vect = None
loss_d_vect = None
gp = None
gp_vect = None
if self.iter < self.n_critic: # Discriminator update
self.iter += 1
loss_d, gp = self._discriminator_step(
self.discrim, self.discrim_opt, generated, im)
if vect_generated is not None:
loss_d_vect, gp_vect = self._discriminator_step(
self.vect_discrim, self.vect_discrim_opt, vect_generated, im)
else: # Generator update
self.iter = 0
loss_g = self._generator_step(
self.gen, self.discrim, self.gen_opt, generated)
if vect_generated is not None:
loss_g_vect = self._generator_step(
self.vect_gen, self.vect_discrim, self.vect_gen_opt, vect_generated)
return {
"loss_g": loss_g,
"loss_d": loss_d,
"loss_g_vect": loss_g_vect,
"loss_d_vect": loss_d_vect,
"gp": gp,
"gp_vect": gp_vect,
"gt_image": im,
"gen_image": generated,
"vector_image": vect_generated,
"lr": self.gen_opt.param_groups[0]["lr"],
}
def init_validation(self):
return dict(sample=None)
def validation_step(self, batch, running_data):
# Switch to eval mode for dropout, batchnorm, etc
self.model.eval()
return running_data
def train(args):
th.manual_seed(0)
np.random.seed(0)
color_output = False
if args.task == "mnist":
dataset = data.MNISTDataset(args.raster_resolution, train=True)
elif args.task == "quickdraw":
dataset = data.QuickDrawImageDataset(
args.raster_resolution, train=True)
else:
raise NotImplementedError()
dataloader = DataLoader(
dataset, batch_size=args.bs, num_workers=args.workers, shuffle=True)
val_dataloader = None
model_params = {
"zdim": args.zdim,
"num_strokes": args.num_strokes,
"imsize": args.raster_resolution,
"stroke_width": args.stroke_width,
"color_output": color_output,
}
gen = models.Generator(**model_params)
gen.train()
discrim = models.Discriminator(color_output=color_output)
discrim.train()
if args.raster_only:
vect_gen = None
vect_discrim = None
else:
if args.generator == "fc":
vect_gen = models.VectorGenerator(**model_params)
elif args.generator == "bezier_fc":
vect_gen = models.BezierVectorGenerator(**model_params)
elif args.generator in ["rnn"]:
vect_gen = models.RNNVectorGenerator(**model_params)
elif args.generator in ["chain_rnn"]:
vect_gen = models.ChainRNNVectorGenerator(**model_params)
else:
raise NotImplementedError()
vect_gen.train()
vect_discrim = models.Discriminator(color_output=color_output)
vect_discrim.train()
LOG.info("Model parameters:\n%s", model_params)
device = "cpu"
if th.cuda.is_available():
device = "cuda"
LOG.info("Using CUDA")
interface = Interface(gen, vect_gen, discrim, vect_discrim,
raster_resolution=args.raster_resolution, lr=args.lr,
wgan_gp=args.wgan_gp,
lr_decay=args.lr_decay, device=device)
env_name = args.task + "_gan"
if args.raster_only:
env_name += "_raster"
else:
env_name += "_vector"
env_name += "_" + args.generator
if args.wgan_gp:
env_name += "_wgan"
chkpt = os.path.join(OUTPUT, env_name)
meta = {
"model_params": model_params,
"task": args.task,
"generator": args.generator,
}
checkpointer = ttools.Checkpointer(
chkpt, gen, meta=meta,
optimizers=interface.optimizers,
schedulers=interface.schedulers,
prefix="g_")
checkpointer_d = ttools.Checkpointer(
chkpt, discrim,
prefix="d_")
# Resume from checkpoint, if any
extras, _ = checkpointer.load_latest()
checkpointer_d.load_latest()
if not args.raster_only:
checkpointer_vect = ttools.Checkpointer(
chkpt, vect_gen, meta=meta,
optimizers=interface.optimizers,
schedulers=interface.schedulers,
prefix="vect_g_")
checkpointer_d_vect = ttools.Checkpointer(
chkpt, vect_discrim,
prefix="vect_d_")
extras, _ = checkpointer_vect.load_latest()
checkpointer_d_vect.load_latest()
epoch = extras["epoch"] if extras and "epoch" in extras.keys() else 0
# if meta is not None and meta["model_parameters"] != model_params:
# LOG.info("Checkpoint's metaparams differ "
# "from CLI, aborting: %s and %s", meta, model_params)
trainer = ttools.Trainer(interface)
# Add callbacks
losses = ["loss_g", "loss_d", "loss_g_vect", "loss_d_vect", "gp",
"gp_vect"]
training_debug = ["lr"]
trainer.add_callback(Callback(
env=env_name, win="samples", port=args.port, frequency=args.freq))
trainer.add_callback(ttools.callbacks.ProgressBarCallback(
keys=losses, val_keys=None))
trainer.add_callback(ttools.callbacks.MultiPlotCallback(
keys=losses, val_keys=None, env=env_name, port=args.port,
server=args.server, base_url=args.base_url,
win="losses", frequency=args.freq))
trainer.add_callback(ttools.callbacks.VisdomLoggingCallback(
keys=training_debug, smoothing=0, val_keys=None, env=env_name,
server=args.server, base_url=args.base_url,
port=args.port))
trainer.add_callback(ttools.callbacks.CheckpointingCallback(
checkpointer, max_files=2, interval=600, max_epochs=10))
trainer.add_callback(ttools.callbacks.CheckpointingCallback(
checkpointer_d, max_files=2, interval=600, max_epochs=10))
if not args.raster_only:
trainer.add_callback(ttools.callbacks.CheckpointingCallback(
checkpointer_vect, max_files=2, interval=600, max_epochs=10))
trainer.add_callback(ttools.callbacks.CheckpointingCallback(
checkpointer_d_vect, max_files=2, interval=600, max_epochs=10))
trainer.add_callback(
ttools.callbacks.LRSchedulerCallback(interface.schedulers))
# Start training
trainer.train(dataloader, starting_epoch=epoch,
val_dataloader=val_dataloader,
num_epochs=args.num_epochs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--task",
default="mnist",
choices=["mnist", "quickdraw"])
parser.add_argument("--generator",
default="bezier_fc",
choices=["bezier_fc", "fc", "rnn", "chain_rnn"],
help="model to use as generator")
parser.add_argument("--raster_only", action="store_true", default=False,
help="if true only train the raster baseline")
parser.add_argument("--standard_gan", dest="wgan_gp", action="store_false",
default=True,
help="if true, use regular GAN instead of WGAN")
# Training params
parser.add_argument("--bs", type=int, default=4, help="batch size")
parser.add_argument("--workers", type=int, default=4,
help="number of dataloader threads")
parser.add_argument("--num_epochs", type=int, default=200,
help="number of epochs to train for")
parser.add_argument("--lr", type=float, default=1e-4,
help="learning rate")
parser.add_argument("--lr_decay", type=float, default=0.9999,
help="exponential learning rate decay rate")
# Model configuration
parser.add_argument("--zdim", type=int, default=32,
help="latent space dimension")
parser.add_argument("--stroke_width", type=float, nargs=2,
default=(0.5, 1.5),
help="min and max stroke width")
parser.add_argument("--num_strokes", type=int, default=16,
help="number of strokes to generate")
parser.add_argument("--raster_resolution", type=int, default=32,
help="raster canvas resolution on each side")
# Viz params
parser.add_argument("--freq", type=int, default=10,
help="visualization frequency")
parser.add_argument("--port", type=int, default=8097,
help="visdom port")
parser.add_argument("--server", default=None,
help="visdom server if not local.")
parser.add_argument("--base_url", default="", help="visdom entrypoint URL")
args = parser.parse_args()
pydiffvg.set_use_gpu(False)
ttools.set_logger(False)
train(args)
|