Spaces:
Sleeping
Sleeping
File size: 17,152 Bytes
31726e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
#!/bin/env python
"""Train a Sketch-RNN."""
import argparse
from enum import Enum
import os
import wget
import numpy as np
import torch as th
from torch.utils.data import DataLoader
import torchvision.datasets as dset
import torchvision.transforms as transforms
import ttools
import ttools.interfaces
from ttools.modules import networks
import pydiffvg
import rendering
import losses
import data
LOG = ttools.get_logger(__name__)
BASE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir)
OUTPUT = os.path.join(BASE_DIR, "results", "sketch_rnn_diffvg")
OUTPUT_BASELINE = os.path.join(BASE_DIR, "results", "sketch_rnn")
class SketchRNN(th.nn.Module):
class Encoder(th.nn.Module):
def __init__(self, hidden_size=512, dropout=0.9, zdim=128,
num_layers=1):
super(SketchRNN.Encoder, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.zdim = zdim
self.lstm = th.nn.LSTM(5, hidden_size, num_layers=self.num_layers,
dropout=dropout, bidirectional=True,
batch_first=True)
# bidirectional model -> *2
self.mu_predictor = th.nn.Linear(2*hidden_size, zdim)
self.sigma_predictor = th.nn.Linear(2*hidden_size, zdim)
def forward(self, sequences, hidden_and_cell=None):
bs = sequences.shape[0]
if hidden_and_cell is None:
hidden = th.zeros(self.num_layers*2, bs, self.hidden_size).to(
sequences.device)
cell = th.zeros(self.num_layers*2, bs, self.hidden_size).to(
sequences.device)
hidden_and_cell = (hidden, cell)
out, hidden_and_cell = self.lstm(sequences, hidden_and_cell)
hidden = hidden_and_cell[0]
# Concat the forward/backward states
fc_input = th.cat([hidden[0], hidden[1]], 1)
# VAE params
mu = self.mu_predictor(fc_input)
log_sigma = self.sigma_predictor(fc_input)
# Sample a latent vector
sigma = th.exp(log_sigma/2.0)
z0 = th.randn(self.zdim, device=mu.device)
z = mu + sigma*z0
# KL divergence needs mu/sigma
return z, mu, log_sigma
class Decoder(th.nn.Module):
"""
The decoder outputs a sequence where each time step models (dx, dy) as
a mixture of `num_gaussians` 2D Gaussians and the state triplet is a
categorical distribution.
The model outputs at each time step:
- 5 parameters for each Gaussian: mu_x, mu_y, sigma_x, sigma_y,
rho_xy
- 1 logit for each Gaussian (the mixture weight)
- 3 logits for the state triplet probabilities
"""
def __init__(self, hidden_size=512, dropout=0.9, zdim=128,
num_layers=1, num_gaussians=20):
super(SketchRNN.Decoder, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.zdim = zdim
self.num_gaussians = num_gaussians
# Maps the latent vector to an initial cell/hidden vector
self.hidden_cell_predictor = th.nn.Linear(zdim, 2*hidden_size)
self.lstm = th.nn.LSTM(
5 + zdim, hidden_size,
num_layers=self.num_layers, dropout=dropout,
batch_first=True)
self.parameters_predictor = th.nn.Linear(
hidden_size, num_gaussians + 5*num_gaussians + 3)
def forward(self, inputs, z, hidden_and_cell=None):
# Every step in the sequence takes the latent vector as input so we
# replicate it here
expanded_z = z.unsqueeze(1).repeat(1, inputs.shape[1], 1)
inputs = th.cat([inputs, expanded_z], 2)
bs, steps = inputs.shape[:2]
if hidden_and_cell is None:
# Initialize from latent vector
hidden_and_cell = self.hidden_cell_predictor(th.tanh(z))
hidden = hidden_and_cell[:, :self.hidden_size]
hidden = hidden.unsqueeze(0).contiguous()
cell = hidden_and_cell[:, self.hidden_size:]
cell = cell.unsqueeze(0).contiguous()
hidden_and_cell = (hidden, cell)
outputs, hidden_and_cell = self.lstm(inputs, hidden_and_cell)
hidden, cell = hidden_and_cell
# if self.training:
# At train time we want parameters for each time step
outputs = outputs.reshape(bs*steps, self.hidden_size)
params = self.parameters_predictor(outputs).view(bs, steps, -1)
pen_logits = params[..., -3:]
gaussian_params = params[..., :-3]
mixture_logits = gaussian_params[..., :self.num_gaussians]
gaussian_params = gaussian_params[..., self.num_gaussians:].view(
bs, steps, self.num_gaussians, -1)
return pen_logits, mixture_logits, gaussian_params, hidden_and_cell
def __init__(self, zdim=128, num_gaussians=20, encoder_dim=256,
decoder_dim=512):
super(SketchRNN, self).__init__()
self.encoder = SketchRNN.Encoder(zdim=zdim, hidden_size=encoder_dim)
self.decoder = SketchRNN.Decoder(zdim=zdim, hidden_size=decoder_dim,
num_gaussians=num_gaussians)
def forward(self, sequences):
# Encode the sequences as latent vectors
# We skip the first time step since it is the same for all sequences:
# (0, 0, 1, 0, 0)
z, mu, log_sigma = self.encoder(sequences[:, 1:])
# Decode the latent vector into a model sequence
# Do not process the last time step (it is an end-of-sequence token)
pen_logits, mixture_logits, gaussian_params, hidden_and_cell = \
self.decoder(sequences[:, :-1], z)
return {
"pen_logits": pen_logits,
"mixture_logits": mixture_logits,
"gaussian_params": gaussian_params,
"z": z,
"mu": mu,
"log_sigma": log_sigma,
"hidden_and_cell": hidden_and_cell,
}
def sample(self, sequences, temperature=1.0):
# Compute a latent vector conditionned based on a real sequence
z, _, _ = self.encoder(sequences[:, 1:])
start_of_seq = sequences[:, :1]
max_steps = sequences.shape[1] - 1 # last step is an end-of-seq token
output_sequences = th.zeros_like(sequences)
output_sequences[:, 0] = start_of_seq.squeeze(1)
current_input = start_of_seq
hidden_and_cell = None
for step in range(max_steps):
pen_logits, mixture_logits, gaussian_params, hidden_and_cell = \
self.decoder(current_input, z, hidden_and_cell=hidden_and_cell)
# Pen and displacement state for the next step
next_state = th.zeros_like(current_input)
# Adjust temperature to control randomness
mixture_logits = mixture_logits*temperature
pen_logits = pen_logits*temperature
# Select one of 3 pen states
pen_distrib = \
th.distributions.categorical.Categorical(logits=pen_logits)
pen_state = pen_distrib.sample()
# One-hot encoding of the state
next_state[:, :, 2:].scatter_(2, pen_state.unsqueeze(-1),
th.ones_like(next_state[:, :, 2:]))
# Select one of the Gaussians from the mixture
mixture_distrib = \
th.distributions.categorical.Categorical(logits=mixture_logits)
mixture_idx = mixture_distrib.sample()
# select the Gaussian parameter
mixture_idx = mixture_idx.unsqueeze(-1).unsqueeze(-1)
mixture_idx = mixture_idx.repeat(1, 1, 1, 5)
params = th.gather(gaussian_params, 2, mixture_idx).squeeze(2)
# Sample a Gaussian from the corresponding Gaussian
mu = params[..., :2]
sigma_x = params[..., 2].exp()
sigma_y = params[..., 3].exp()
rho_xy = th.tanh(params[..., 4])
cov = th.zeros(params.shape[0], params.shape[1], 2, 2,
device=params.device)
cov[..., 0, 0] = sigma_x.pow(2)*temperature
cov[..., 1, 1] = sigma_x.pow(2)*temperature
cov[..., 1, 0] = sigma_x*sigma_y*rho_xy*temperature
point_distrib = \
th.distributions.multivariate_normal.MultivariateNormal(
mu, scale_tril=cov)
point = point_distrib.sample()
next_state[:, :, :2] = point
# Commit step to output
output_sequences[:, step + 1] = next_state.squeeze(1)
# Prepare next recurrent step
current_input = next_state
return output_sequences
class SketchRNNCallback(ttools.callbacks.ImageDisplayCallback):
"""Simple callback that visualize images."""
def visualized_image(self, batch, step_data, is_val=False):
if not is_val:
# No need to render training data
return None
with th.no_grad():
# only display the first n drawings
n = 8
batch = batch[:n]
out_im = rendering.stroke2diffvg(step_data["sample"][:n])
im = rendering.stroke2diffvg(batch)
im = th.cat([im, out_im], 2)
return im
def caption(self, batch, step_data, is_val=False):
if is_val:
return "top: truth, bottom: sample"
else:
return "top: truth, bottom: sample"
class Interface(ttools.ModelInterface):
def __init__(self, model, lr=1e-3, lr_decay=0.9999,
kl_weight=0.5, kl_min_weight=0.01, kl_decay=0.99995,
device="cpu", grad_clip=1.0, sampling_temperature=0.4):
super(Interface, self).__init__()
self.grad_clip = grad_clip
self.sampling_temperature = sampling_temperature
self.model = model
self.device = device
self.model.to(self.device)
self.enc_opt = th.optim.Adam(self.model.encoder.parameters(), lr=lr)
self.dec_opt = th.optim.Adam(self.model.decoder.parameters(), lr=lr)
self.kl_weight = kl_weight
self.kl_min_weight = kl_min_weight
self.kl_decay = kl_decay
self.kl_loss = losses.KLDivergence()
self.schedulers = [
th.optim.lr_scheduler.ExponentialLR(self.enc_opt, lr_decay),
th.optim.lr_scheduler.ExponentialLR(self.dec_opt, lr_decay),
]
self.reconstruction_loss = losses.GaussianMixtureReconstructionLoss()
def optimizers(self):
return [self.enc_opt, self.dec_opt]
def training_step(self, batch):
batch = batch.to(self.device)
out = self.model(batch)
kl_loss = self.kl_loss(
out["mu"], out["log_sigma"])
# The target to predict is the next sequence step
targets = batch[:, 1:].to(self.device)
# Scale the KL divergence weight
try:
state = self.enc_opt.state_dict()["param_groups"][0]["params"][0]
optim_step = self.enc_opt.state_dict()["state"][state]["step"]
except KeyError:
optim_step = 0 # no step taken yet
kl_scaling = 1.0 - (1.0 -
self.kl_min_weight)*(self.kl_decay**optim_step)
kl_weight = self.kl_weight * kl_scaling
reconstruction_loss = self.reconstruction_loss(
out["pen_logits"], out["mixture_logits"],
out["gaussian_params"], targets)
loss = kl_loss*self.kl_weight + reconstruction_loss
self.enc_opt.zero_grad()
self.dec_opt.zero_grad()
loss.backward()
# clip gradients
enc_nrm = th.nn.utils.clip_grad_norm_(
self.model.encoder.parameters(), self.grad_clip)
dec_nrm = th.nn.utils.clip_grad_norm_(
self.model.decoder.parameters(), self.grad_clip)
if enc_nrm > self.grad_clip:
LOG.debug("Clipped encoder gradient (%.5f) to %.2f",
enc_nrm, self.grad_clip)
if dec_nrm > self.grad_clip:
LOG.debug("Clipped decoder gradient (%.5f) to %.2f",
dec_nrm, self.grad_clip)
self.enc_opt.step()
self.dec_opt.step()
return {
"loss": loss.item(),
"kl_loss": kl_loss.item(),
"kl_weight": kl_weight,
"recons_loss": reconstruction_loss.item(),
"lr": self.enc_opt.param_groups[0]["lr"],
}
def init_validation(self):
return dict(sample=None)
def validation_step(self, batch, running_data):
# Switch to eval mode for dropout, batchnorm, etc
self.model.eval()
with th.no_grad():
sample = self.model.sample(
batch.to(self.device), temperature=self.sampling_temperature)
running_data["sample"] = sample
self.model.train()
return running_data
def train(args):
th.manual_seed(0)
np.random.seed(0)
dataset = data.QuickDrawDataset(args.dataset)
dataloader = DataLoader(
dataset, batch_size=args.bs, num_workers=4, shuffle=True,
pin_memory=False)
val_dataset = [s for idx, s in enumerate(dataset) if idx < 8]
val_dataloader = DataLoader(
val_dataset, batch_size=8, num_workers=4, shuffle=False,
pin_memory=False)
model_params = {
"zdim": args.zdim,
"num_gaussians": args.num_gaussians,
"encoder_dim": args.encoder_dim,
"decoder_dim": args.decoder_dim,
}
model = SketchRNN(**model_params)
model.train()
device = "cpu"
if th.cuda.is_available():
device = "cuda"
LOG.info("Using CUDA")
interface = Interface(model, lr=args.lr, lr_decay=args.lr_decay,
kl_decay=args.kl_decay, kl_weight=args.kl_weight,
sampling_temperature=args.sampling_temperature,
device=device)
chkpt = OUTPUT_BASELINE
env_name = "sketch_rnn"
# Resume from checkpoint, if any
checkpointer = ttools.Checkpointer(
chkpt, model, meta=model_params,
optimizers=interface.optimizers(),
schedulers=interface.schedulers)
extras, meta = checkpointer.load_latest()
epoch = extras["epoch"] if extras and "epoch" in extras.keys() else 0
if meta is not None and meta != model_params:
LOG.info("Checkpoint's metaparams differ "
"from CLI, aborting: %s and %s", meta, model_params)
trainer = ttools.Trainer(interface)
# Add callbacks
losses = ["loss", "kl_loss", "recons_loss"]
training_debug = ["lr", "kl_weight"]
trainer.add_callback(ttools.callbacks.ProgressBarCallback(
keys=losses, val_keys=None))
trainer.add_callback(ttools.callbacks.VisdomLoggingCallback(
keys=losses, val_keys=None, env=env_name, port=args.port))
trainer.add_callback(ttools.callbacks.VisdomLoggingCallback(
keys=training_debug, smoothing=0, val_keys=None, env=env_name,
port=args.port))
trainer.add_callback(ttools.callbacks.CheckpointingCallback(
checkpointer, max_files=2, interval=600, max_epochs=10))
trainer.add_callback(
ttools.callbacks.LRSchedulerCallback(interface.schedulers))
trainer.add_callback(SketchRNNCallback(
env=env_name, win="samples", port=args.port, frequency=args.freq))
# Start training
trainer.train(dataloader, starting_epoch=epoch,
val_dataloader=val_dataloader,
num_epochs=args.num_epochs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", default="cat.npz")
# Training params
parser.add_argument("--bs", type=int, default=100)
parser.add_argument("--num_epochs", type=int, default=10000)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--lr_decay", type=float, default=0.9999)
parser.add_argument("--kl_weight", type=float, default=0.5)
parser.add_argument("--kl_decay", type=float, default=0.99995)
# Model configuration
parser.add_argument("--zdim", type=int, default=128)
parser.add_argument("--num_gaussians", type=int, default=20)
parser.add_argument("--encoder_dim", type=int, default=256)
parser.add_argument("--decoder_dim", type=int, default=512)
parser.add_argument("--sampling_temperature", type=float, default=0.4,
help="controls sampling randomness. "
"0.0: deterministic, 1.0: unchanged")
# Viz params
parser.add_argument("--freq", type=int, default=100)
parser.add_argument("--port", type=int, default=5000)
args = parser.parse_args()
pydiffvg.set_use_gpu(th.cuda.is_available())
train(args)
|