File size: 17,152 Bytes
31726e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
#!/bin/env python
"""Train a Sketch-RNN."""
import argparse
from enum import Enum
import os
import wget

import numpy as np
import torch as th
from torch.utils.data import DataLoader
import torchvision.datasets as dset
import torchvision.transforms as transforms

import ttools
import ttools.interfaces
from ttools.modules import networks

import pydiffvg

import rendering
import losses
import data

LOG = ttools.get_logger(__name__)


BASE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir)
OUTPUT = os.path.join(BASE_DIR, "results", "sketch_rnn_diffvg")
OUTPUT_BASELINE = os.path.join(BASE_DIR, "results", "sketch_rnn")


class SketchRNN(th.nn.Module):
    class Encoder(th.nn.Module):
        def __init__(self, hidden_size=512, dropout=0.9, zdim=128,
                     num_layers=1):
            super(SketchRNN.Encoder, self).__init__()
            self.hidden_size = hidden_size
            self.num_layers = num_layers
            self.zdim = zdim

            self.lstm = th.nn.LSTM(5, hidden_size, num_layers=self.num_layers,
                                   dropout=dropout, bidirectional=True,
                                   batch_first=True)

            # bidirectional model -> *2
            self.mu_predictor = th.nn.Linear(2*hidden_size, zdim)
            self.sigma_predictor = th.nn.Linear(2*hidden_size, zdim)

        def forward(self, sequences, hidden_and_cell=None):
            bs = sequences.shape[0]
            if hidden_and_cell is None:
                hidden = th.zeros(self.num_layers*2, bs, self.hidden_size).to(
                    sequences.device)
                cell = th.zeros(self.num_layers*2, bs, self.hidden_size).to(
                    sequences.device)
                hidden_and_cell = (hidden, cell)

            out, hidden_and_cell = self.lstm(sequences, hidden_and_cell)
            hidden = hidden_and_cell[0]

            # Concat the forward/backward states
            fc_input = th.cat([hidden[0], hidden[1]], 1)

            # VAE params
            mu = self.mu_predictor(fc_input)
            log_sigma = self.sigma_predictor(fc_input)

            # Sample a latent vector
            sigma = th.exp(log_sigma/2.0)
            z0 = th.randn(self.zdim, device=mu.device)
            z = mu + sigma*z0

            # KL divergence needs mu/sigma
            return z, mu, log_sigma

    class Decoder(th.nn.Module):
        """
        The decoder outputs a sequence where each time step models (dx, dy) as
        a mixture of `num_gaussians` 2D Gaussians and the state triplet is a
        categorical distribution.

        The model outputs at each time step:
            - 5 parameters for each Gaussian: mu_x, mu_y, sigma_x, sigma_y,
              rho_xy
            - 1 logit for each Gaussian (the mixture weight)
            - 3 logits for the state triplet probabilities
        """
        def __init__(self, hidden_size=512, dropout=0.9, zdim=128,
                     num_layers=1, num_gaussians=20):
            super(SketchRNN.Decoder, self).__init__()
            self.hidden_size = hidden_size
            self.num_layers = num_layers
            self.zdim = zdim
            self.num_gaussians = num_gaussians

            # Maps the latent vector to an initial cell/hidden vector
            self.hidden_cell_predictor = th.nn.Linear(zdim, 2*hidden_size)

            self.lstm = th.nn.LSTM(
                5 + zdim, hidden_size,
                num_layers=self.num_layers, dropout=dropout,
                batch_first=True)

            self.parameters_predictor = th.nn.Linear(
                hidden_size, num_gaussians + 5*num_gaussians + 3)

        def forward(self, inputs, z, hidden_and_cell=None):
            # Every step in the sequence takes the latent vector as input so we
            # replicate it here
            expanded_z = z.unsqueeze(1).repeat(1, inputs.shape[1], 1)
            inputs = th.cat([inputs, expanded_z], 2)

            bs, steps = inputs.shape[:2]
            if hidden_and_cell is None:
                # Initialize from latent vector
                hidden_and_cell = self.hidden_cell_predictor(th.tanh(z))
                hidden = hidden_and_cell[:, :self.hidden_size]
                hidden = hidden.unsqueeze(0).contiguous()
                cell = hidden_and_cell[:, self.hidden_size:]
                cell = cell.unsqueeze(0).contiguous()
                hidden_and_cell = (hidden, cell)

            outputs, hidden_and_cell = self.lstm(inputs, hidden_and_cell)
            hidden, cell = hidden_and_cell

            # if self.training:
            # At train time we want parameters for each time step
            outputs = outputs.reshape(bs*steps, self.hidden_size)
            params = self.parameters_predictor(outputs).view(bs, steps, -1)

            pen_logits = params[..., -3:]
            gaussian_params = params[..., :-3]
            mixture_logits = gaussian_params[..., :self.num_gaussians]
            gaussian_params = gaussian_params[..., self.num_gaussians:].view(
                bs, steps, self.num_gaussians, -1)

            return pen_logits, mixture_logits, gaussian_params, hidden_and_cell

    def __init__(self, zdim=128, num_gaussians=20, encoder_dim=256,
                 decoder_dim=512):
        super(SketchRNN, self).__init__()
        self.encoder = SketchRNN.Encoder(zdim=zdim, hidden_size=encoder_dim)
        self.decoder = SketchRNN.Decoder(zdim=zdim, hidden_size=decoder_dim,
                                         num_gaussians=num_gaussians)

    def forward(self, sequences):
        # Encode the sequences as latent vectors
        # We skip the first time step since it is the same for all sequences:
        # (0, 0, 1, 0, 0)
        z, mu, log_sigma = self.encoder(sequences[:, 1:])

        # Decode the latent vector into a model sequence
        # Do not process the last time step (it is an end-of-sequence token)
        pen_logits, mixture_logits, gaussian_params, hidden_and_cell = \
            self.decoder(sequences[:, :-1], z)

        return {
            "pen_logits": pen_logits,
            "mixture_logits": mixture_logits,
            "gaussian_params": gaussian_params,
            "z": z,
            "mu": mu,
            "log_sigma": log_sigma,
            "hidden_and_cell": hidden_and_cell,
        }

    def sample(self, sequences, temperature=1.0):
        # Compute a latent vector conditionned based on a real sequence
        z, _, _ = self.encoder(sequences[:, 1:])

        start_of_seq = sequences[:, :1]

        max_steps = sequences.shape[1] - 1  # last step is an end-of-seq token

        output_sequences = th.zeros_like(sequences)
        output_sequences[:, 0] = start_of_seq.squeeze(1)

        current_input = start_of_seq
        hidden_and_cell = None
        for step in range(max_steps):
            pen_logits, mixture_logits, gaussian_params, hidden_and_cell = \
                self.decoder(current_input, z, hidden_and_cell=hidden_and_cell)

            # Pen and displacement state for the next step
            next_state = th.zeros_like(current_input)

            # Adjust temperature to control randomness
            mixture_logits = mixture_logits*temperature
            pen_logits = pen_logits*temperature

            # Select one of 3 pen states
            pen_distrib = \
                th.distributions.categorical.Categorical(logits=pen_logits)
            pen_state = pen_distrib.sample()

            # One-hot encoding of the state
            next_state[:, :, 2:].scatter_(2, pen_state.unsqueeze(-1),
                                          th.ones_like(next_state[:, :, 2:]))

            # Select one of the Gaussians from the mixture
            mixture_distrib = \
                th.distributions.categorical.Categorical(logits=mixture_logits)
            mixture_idx = mixture_distrib.sample()

            # select the Gaussian parameter
            mixture_idx = mixture_idx.unsqueeze(-1).unsqueeze(-1)
            mixture_idx = mixture_idx.repeat(1, 1, 1, 5)
            params = th.gather(gaussian_params, 2, mixture_idx).squeeze(2)

            # Sample a Gaussian from the corresponding Gaussian
            mu = params[..., :2]
            sigma_x = params[..., 2].exp()
            sigma_y = params[..., 3].exp()
            rho_xy = th.tanh(params[..., 4])
            cov = th.zeros(params.shape[0], params.shape[1], 2, 2,
                           device=params.device)
            cov[..., 0, 0] = sigma_x.pow(2)*temperature
            cov[..., 1, 1] = sigma_x.pow(2)*temperature
            cov[..., 1, 0] = sigma_x*sigma_y*rho_xy*temperature
            point_distrib = \
                th.distributions.multivariate_normal.MultivariateNormal(
                    mu, scale_tril=cov)
            point = point_distrib.sample()
            next_state[:, :, :2] = point

            # Commit step to output
            output_sequences[:, step + 1] = next_state.squeeze(1)

            # Prepare next recurrent step
            current_input = next_state

        return output_sequences


class SketchRNNCallback(ttools.callbacks.ImageDisplayCallback):
    """Simple callback that visualize images."""
    def visualized_image(self, batch, step_data, is_val=False):
        if not is_val:
            # No need to render training data
            return None

        with th.no_grad():
            # only display the first n drawings
            n = 8
            batch = batch[:n]

            out_im = rendering.stroke2diffvg(step_data["sample"][:n])
            im = rendering.stroke2diffvg(batch)
            im = th.cat([im, out_im], 2)

        return im

    def caption(self, batch, step_data, is_val=False):
        if is_val:
            return "top: truth, bottom: sample"
        else:
            return "top: truth, bottom: sample"


class Interface(ttools.ModelInterface):
    def __init__(self, model, lr=1e-3, lr_decay=0.9999,
                 kl_weight=0.5, kl_min_weight=0.01, kl_decay=0.99995,
                 device="cpu", grad_clip=1.0, sampling_temperature=0.4):
        super(Interface, self).__init__()
        self.grad_clip = grad_clip
        self.sampling_temperature = sampling_temperature

        self.model = model
        self.device = device
        self.model.to(self.device)
        self.enc_opt = th.optim.Adam(self.model.encoder.parameters(), lr=lr)
        self.dec_opt = th.optim.Adam(self.model.decoder.parameters(), lr=lr)

        self.kl_weight = kl_weight
        self.kl_min_weight = kl_min_weight
        self.kl_decay = kl_decay
        self.kl_loss = losses.KLDivergence()

        self.schedulers = [
            th.optim.lr_scheduler.ExponentialLR(self.enc_opt, lr_decay),
            th.optim.lr_scheduler.ExponentialLR(self.dec_opt, lr_decay),
        ]

        self.reconstruction_loss = losses.GaussianMixtureReconstructionLoss()

    def optimizers(self):
        return [self.enc_opt, self.dec_opt]

    def training_step(self, batch):
        batch = batch.to(self.device)
        out = self.model(batch)

        kl_loss = self.kl_loss(
            out["mu"], out["log_sigma"])

        # The target to predict is the next sequence step
        targets = batch[:, 1:].to(self.device)

        # Scale the KL divergence weight
        try:
            state = self.enc_opt.state_dict()["param_groups"][0]["params"][0]
            optim_step = self.enc_opt.state_dict()["state"][state]["step"]
        except KeyError:
            optim_step = 0  # no step taken yet
        kl_scaling = 1.0 - (1.0 -
                            self.kl_min_weight)*(self.kl_decay**optim_step)
        kl_weight = self.kl_weight * kl_scaling

        reconstruction_loss = self.reconstruction_loss(
            out["pen_logits"], out["mixture_logits"],
            out["gaussian_params"], targets)
        loss = kl_loss*self.kl_weight + reconstruction_loss

        self.enc_opt.zero_grad()
        self.dec_opt.zero_grad()
        loss.backward()

        # clip gradients
        enc_nrm = th.nn.utils.clip_grad_norm_(
            self.model.encoder.parameters(), self.grad_clip)
        dec_nrm = th.nn.utils.clip_grad_norm_(
            self.model.decoder.parameters(), self.grad_clip)

        if enc_nrm > self.grad_clip:
            LOG.debug("Clipped encoder gradient (%.5f) to %.2f",
                      enc_nrm, self.grad_clip)

        if dec_nrm > self.grad_clip:
            LOG.debug("Clipped decoder gradient (%.5f) to %.2f",
                      dec_nrm, self.grad_clip)

        self.enc_opt.step()
        self.dec_opt.step()

        return {
            "loss": loss.item(),
            "kl_loss": kl_loss.item(),
            "kl_weight": kl_weight,
            "recons_loss": reconstruction_loss.item(),
            "lr": self.enc_opt.param_groups[0]["lr"],
        }

    def init_validation(self):
        return dict(sample=None)

    def validation_step(self, batch, running_data):
        # Switch to eval mode for dropout, batchnorm, etc
        self.model.eval()
        with th.no_grad():
            sample = self.model.sample(
                batch.to(self.device), temperature=self.sampling_temperature)
            running_data["sample"] = sample
        self.model.train()
        return running_data


def train(args):
    th.manual_seed(0)
    np.random.seed(0)

    dataset = data.QuickDrawDataset(args.dataset)
    dataloader = DataLoader(
        dataset, batch_size=args.bs, num_workers=4, shuffle=True,
        pin_memory=False)

    val_dataset = [s for idx, s in enumerate(dataset) if idx < 8]
    val_dataloader = DataLoader(
        val_dataset, batch_size=8, num_workers=4, shuffle=False,
        pin_memory=False)

    model_params = {
        "zdim": args.zdim,
        "num_gaussians": args.num_gaussians,
        "encoder_dim": args.encoder_dim,
        "decoder_dim": args.decoder_dim,
    }
    model = SketchRNN(**model_params)
    model.train()

    device = "cpu"
    if th.cuda.is_available():
        device = "cuda"
        LOG.info("Using CUDA")

    interface = Interface(model, lr=args.lr, lr_decay=args.lr_decay,
                          kl_decay=args.kl_decay, kl_weight=args.kl_weight,
                          sampling_temperature=args.sampling_temperature,
                          device=device)

    chkpt = OUTPUT_BASELINE
    env_name = "sketch_rnn"

    # Resume from checkpoint, if any
    checkpointer = ttools.Checkpointer(
        chkpt, model, meta=model_params,
        optimizers=interface.optimizers(),
        schedulers=interface.schedulers)
    extras, meta = checkpointer.load_latest()
    epoch = extras["epoch"] if extras and "epoch" in extras.keys() else 0

    if meta is not None and meta != model_params:
        LOG.info("Checkpoint's metaparams differ "
                 "from CLI, aborting: %s and %s", meta, model_params)

    trainer = ttools.Trainer(interface)

    # Add callbacks
    losses = ["loss", "kl_loss", "recons_loss"]
    training_debug = ["lr", "kl_weight"]
    trainer.add_callback(ttools.callbacks.ProgressBarCallback(
        keys=losses, val_keys=None))
    trainer.add_callback(ttools.callbacks.VisdomLoggingCallback(
        keys=losses, val_keys=None, env=env_name, port=args.port))
    trainer.add_callback(ttools.callbacks.VisdomLoggingCallback(
        keys=training_debug, smoothing=0, val_keys=None, env=env_name,
        port=args.port))
    trainer.add_callback(ttools.callbacks.CheckpointingCallback(
        checkpointer, max_files=2, interval=600, max_epochs=10))
    trainer.add_callback(
        ttools.callbacks.LRSchedulerCallback(interface.schedulers))

    trainer.add_callback(SketchRNNCallback(
        env=env_name, win="samples", port=args.port, frequency=args.freq))

    # Start training
    trainer.train(dataloader, starting_epoch=epoch,
                  val_dataloader=val_dataloader,
                  num_epochs=args.num_epochs)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset", default="cat.npz")

    # Training params
    parser.add_argument("--bs", type=int, default=100)
    parser.add_argument("--num_epochs", type=int, default=10000)
    parser.add_argument("--lr", type=float, default=1e-4)
    parser.add_argument("--lr_decay", type=float, default=0.9999)
    parser.add_argument("--kl_weight", type=float, default=0.5)
    parser.add_argument("--kl_decay", type=float, default=0.99995)

    # Model configuration
    parser.add_argument("--zdim", type=int, default=128)
    parser.add_argument("--num_gaussians", type=int, default=20)
    parser.add_argument("--encoder_dim", type=int, default=256)
    parser.add_argument("--decoder_dim", type=int, default=512)

    parser.add_argument("--sampling_temperature", type=float, default=0.4,
                        help="controls sampling randomness. "
                        "0.0: deterministic, 1.0: unchanged")

    # Viz params
    parser.add_argument("--freq", type=int, default=100)
    parser.add_argument("--port", type=int, default=5000)

    args = parser.parse_args()

    pydiffvg.set_use_gpu(th.cuda.is_available())

    train(args)