Spaces:
Sleeping
Sleeping
File size: 7,563 Bytes
31726e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import os
import time
import torch as th
import numpy as np
import torchvision.datasets as dset
import torchvision.transforms as transforms
import imageio
import ttools
import rendering
BASE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir)
DATA = os.path.join(BASE_DIR, "data")
LOG = ttools.get_logger(__name__)
class QuickDrawImageDataset(th.utils.data.Dataset):
BASE_DATA_URL = \
"https://console.cloud.google.com/storage/browser/_details/quickdraw_dataset/full/numpy_bitmap/cat.npy"
"""
Args:
spatial_limit(int): maximum spatial extent in pixels.
"""
def __init__(self, imsize, train=True):
super(QuickDrawImageDataset, self).__init__()
file = os.path.join(DATA, "cat.npy")
self.imsize = imsize
if not os.path.exists(file):
msg = "Dataset file %s does not exist, please download"
" it from %s" % (file, QuickDrawImageDataset.BASE_DATA_URL)
LOG.error(msg)
raise RuntimeError(msg)
self.data = np.load(file, allow_pickle=True, encoding="latin1")
def __len__(self):
return self.data.shape[0]
def __getitem__(self, idx):
im = np.reshape(self.data[idx], (1, 1, 28, 28))
im = th.from_numpy(im).float() / 255.0
im = th.nn.functional.interpolate(im, size=(self.imsize, self.imsize))
# Bring it to [-1, 1]
im = th.clamp(im, 0, 1)
im -= 0.5
im /= 0.5
return im.squeeze(0)
class QuickDrawDataset(th.utils.data.Dataset):
BASE_DATA_URL = \
"https://storage.cloud.google.com/quickdraw_dataset/sketchrnn"
"""
Args:
spatial_limit(int): maximum spatial extent in pixels.
"""
def __init__(self, dataset, mode="train",
max_seq_length=250,
spatial_limit=1000):
super(QuickDrawDataset, self).__init__()
file = os.path.join(DATA, "sketchrnn_"+dataset)
remote = os.path.join(QuickDrawDataset.BASE_DATA_URL, dataset)
self.max_seq_length = max_seq_length
self.spatial_limit = spatial_limit
if mode not in ["train", "test", "valid"]:
return ValueError("Only allowed data mode are 'train' and 'test',"
" 'valid'.")
if not os.path.exists(file):
msg = "Dataset file %s does not exist, please download"
" it from %s" % (file, remote)
LOG.error(msg)
raise RuntimeError(msg)
data = np.load(file, allow_pickle=True, encoding="latin1")[mode]
data = self.purify(data)
data = self.normalize(data)
# Length of longest sequence in the dataset
self.nmax = max([len(seq) for seq in data])
self.sketches = data
def __repr__(self):
return "Dataset with %d sequences of max length %d" % \
(len(self.sketches), self.nmax)
def __len__(self):
return len(self.sketches)
def __getitem__(self, idx):
"""Return the idx-th stroke in 5-D format, padded to length (Nmax+2).
The first and last element of the sequence are fixed to "start-" and
"end-of-sequence" token.
dx, dy, + 3 numbers for one-hot encoding of state:
1 0 0: pen touching paper till next point
0 1 0: pen lifted from paper after current point
0 0 1: drawing has ended, next points (including current will not be
drawn)
"""
sample_data = self.sketches[idx]
# Allow two extra slots for start/end of sequence tokens
sample = np.zeros((self.nmax+2, 5), dtype=np.float32)
n = sample_data.shape[0]
# normalize dx, dy
deltas = sample_data[:, :2]
# Absolute coordinates
positions = deltas[..., :2].cumsum(0)
maxi = np.abs(positions).max() + 1e-8
deltas = deltas / (1.1 * maxi) # leave some margin on edges
# fill in dx, dy coordinates
sample[1:n+1, :2] = deltas
# on paper indicator: 0 means touching paper in the 3d format, flip it
sample[1:n+1, 2] = 1 - sample_data[:, 2]
# off-paper indicator, complement of previous flag
sample[1:n+1, 3] = 1 - sample[1:n+1, 2]
# fill with end of sequence tokens for the remainder
sample[n+1:, 4] = 1
# Start of sequence token
sample[0] = [0, 0, 1, 0, 0]
return sample
def purify(self, strokes):
"""removes to small or too long sequences + removes large gaps"""
data = []
for seq in strokes:
if seq.shape[0] <= self.max_seq_length:
# and seq.shape[0] > 10:
# Limit large spatial gaps
seq = np.minimum(seq, self.spatial_limit)
seq = np.maximum(seq, -self.spatial_limit)
seq = np.array(seq, dtype=np.float32)
data.append(seq)
return data
def calculate_normalizing_scale_factor(self, strokes):
"""Calculate the normalizing factor explained in appendix of
sketch-rnn."""
data = []
for i, stroke_i in enumerate(strokes):
for j, pt in enumerate(strokes[i]):
data.append(pt[0])
data.append(pt[1])
data = np.array(data)
return np.std(data)
def normalize(self, strokes):
"""Normalize entire dataset (delta_x, delta_y) by the scaling
factor."""
data = []
scale_factor = self.calculate_normalizing_scale_factor(strokes)
for seq in strokes:
seq[:, 0:2] /= scale_factor
data.append(seq)
return data
class FixedLengthQuickDrawDataset(QuickDrawDataset):
"""A variant of the QuickDraw dataset where the strokes are represented as
a fixed-length sequence of triplets (dx, dy, opacity), where opacity = 0, 1.
"""
def __init__(self, *args, canvas_size=64, **kwargs):
super(FixedLengthQuickDrawDataset, self).__init__(*args, **kwargs)
self.canvas_size = canvas_size
def __getitem__(self, idx):
sample = super(FixedLengthQuickDrawDataset, self).__getitem__(idx)
# We construct a stroke opacity variable from the pen down state, dx, dy remain unchanged
strokes = sample[:, :3]
im = np.zeros((1, 1))
# render image
# start = time.time()
im = rendering.opacityStroke2diffvg(
th.from_numpy(strokes).unsqueeze(0), canvas_size=self.canvas_size,
relative=True, debug=False)
im = im.squeeze(0).numpy()
# elapsed = (time.time() - start)*1000
# print("item %d pipeline gt rendering took %.2fms" % (idx, elapsed))
return strokes, im
class MNISTDataset(th.utils.data.Dataset):
def __init__(self, imsize, train=True):
super(MNISTDataset, self).__init__()
self.mnist = dset.MNIST(root=os.path.join(DATA, "mnist"),
train=train,
download=True,
transform=transforms.Compose([
transforms.Resize((imsize, imsize)),
transforms.ToTensor(),
]))
def __len__(self):
return len(self.mnist)
def __getitem__(self, idx):
im, label = self.mnist[idx]
# make sure data uses [0, 1] range
im -= im.min()
im /= im.max() + 1e-8
# Bring it to [-1, 1]
im -= 0.5
im /= 0.5
return im
|