File size: 19,663 Bytes
01df1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
import pandas as pd
import numpy as np
import math
from statistics import mean, stdev
from collections import defaultdict

import shapely
import shapely.wkt
from shapely.geometry import Point, MultiPoint, LineString, MultiLineString, Polygon, LinearRing
from shapely.ops import voronoi_diagram, substring, unary_union, nearest_points
from shapely import affinity
from shapely.prepared import prep

import cv2 as cv


def segments(polyline):
    return list(map(LineString, zip(polyline.coords[:-1], polyline.coords[1:])))


def scale_move_x(x, xmin_abs, scale):
    xn = (x / scale) - 1 - xmin_abs
    return xn

def scale_move_y(y, ymin_abs, scale):
    yn = (y / scale) - 1 - ymin_abs
    return yn

def scale_area(a, scale):
    a = a / (scale**2)
    return a

def scale_perimeter(p, scale):
    p = p / scale
    return p


def wall_segment_cosine(direction, apa_line_seg):
    seg_s = list(apa_line_seg.coords)[0]
    seg_e = list(apa_line_seg.coords)[1]
    
    normal_x = seg_e[0] - seg_s[0]
    normal_y = seg_e[1] - seg_s[1]
    
    normal_s = (-normal_y, normal_x)
    normal_e = (normal_y, -normal_x)
    
    o = np.array([-normal_y, normal_x])
    w = np.array([normal_y, -normal_x])
    
    if direction == "south":
        d = np.array([-normal_y, normal_x-1])
    if direction == "east":
        d = np.array([-normal_y+1, normal_x])
    if direction == "north":
        d = np.array([-normal_y, normal_x+1])
    if direction == "west":
        d = np.array([-normal_y-1, normal_x])
        
    od = d - o
    ow = w - o
    
    cosine = np.dot(od, ow) / (np.linalg.norm(od) * np.linalg.norm(ow))
    return cosine


# Dir_S_longestedge, Dir_N_longestedge, Dir_W_longestedge, Dir_E_longestedge, Dir_S_max, Dir_N_max, Dir_W_max, Dir_E_max, Facade_length, Facade_ratio
def wall_direction_ratio(apa_line, apa_wall):
    apa_wall_O = [i for indx,i in enumerate(segments(apa_line)) if apa_wall[indx] == "O"]
    apa_wall_O = MultiLineString(apa_wall_O)

    wall_O_length = []
    wall_O_south = []
    wall_O_east = []
    wall_O_north = []
    wall_O_west = []
    apa_wall_O_num = len(apa_wall_O.geoms)

    if apa_wall_O_num > 0:
        for i in range(apa_wall_O_num):
            wall_seg = apa_wall_O.geoms[i]
            wall_length = wall_seg.length
            south_cos = wall_segment_cosine("south", wall_seg)
            east_cos = wall_segment_cosine("east", wall_seg)
            north_cos = wall_segment_cosine("north", wall_seg)
            west_cos = wall_segment_cosine("west", wall_seg)

            if south_cos < 0:
                south_cos = 0
            if east_cos < 0:
                east_cos = 0
            if north_cos < 0:
                north_cos = 0
            if west_cos < 0:
                west_cos = 0

            wall_O_length.append(wall_length)
            wall_O_south.append(south_cos)
            wall_O_east.append(east_cos)
            wall_O_north.append(north_cos)
            wall_O_west.append(west_cos)


        max_length_index = np.array(wall_O_length).argmax()
        Dir_S_longestedge =  wall_O_south[max_length_index]   
        Dir_N_longestedge =  wall_O_north[max_length_index]   
        Dir_W_longestedge =  wall_O_west[max_length_index]  
        Dir_E_longestedge =  wall_O_east[max_length_index]

        Dir_S_max = max(wall_O_south)
        Dir_N_max = max(wall_O_north)
        Dir_W_max = max(wall_O_west)
        Dir_E_max = max(wall_O_east)

        Facade_length = apa_wall_O.length
        apa_line_length = apa_line.length
        Facade_ratio = Facade_length / apa_line_length
    else:
        Dir_S_longestedge = 0
        Dir_N_longestedge = 0
        Dir_W_longestedge = 0
        Dir_E_longestedge = 0
        Dir_S_max = 0
        Dir_N_max = 0
        Dir_W_max = 0
        Dir_E_max = 0
        Facade_length = 0
        Facade_ratio = 0

    return Dir_S_longestedge, Dir_N_longestedge, Dir_W_longestedge, Dir_E_longestedge, Dir_S_max, Dir_N_max, Dir_W_max, Dir_E_max, Facade_length, Facade_ratio


# apa_geo
def apartment_perimeter(apa_geo):
    perimeter =apa_geo.length
    return perimeter



def apartment_area(apa_geo):
    area =apa_geo.area
    return area


def boundingbox(apa_geo):
    boundingbox = apa_geo.bounds
    return boundingbox


# BBox_width_x, BBox_height_y, Aspect_ratio, Extent, ULC_x, ULC_y, LRC_x, LRC_y
def boundingbox_features(apa_geo):
    # [Aspect_ratio, Extent] ---> https://docs.opencv.org/3.4/d1/d32/tutorial_py_contour_properties.html

    bbox_xy = boundingbox(apa_geo)
    bbox_geo = Polygon([(bbox_xy[0], bbox_xy[1]), (bbox_xy[2], bbox_xy[1]), (bbox_xy[2], bbox_xy[3]), (bbox_xy[0], bbox_xy[3])])
    
    BBox_width_x = bbox_xy[2] - bbox_xy[0]
    BBox_height_y = bbox_xy[3] - bbox_xy[1]
    Aspect_ratio = BBox_width_x / BBox_height_y
    
    bbox_geo_area = bbox_geo.area
    Area = apartment_area(apa_geo)
    Extent = Area / bbox_geo_area
    
    ULC_x = bbox_xy[0]
    ULC_y = bbox_xy[3]
    LRC_x = bbox_xy[2]
    LRC_y = bbox_xy[1]
    
    return BBox_width_x, BBox_height_y, Aspect_ratio, Extent, ULC_x, ULC_y, LRC_x, LRC_y


# Max_diameter
def max_diameter(apa_geo):
    # [Max_diameter] ---> https://www.mvtec.com/doc/halcon/12/en/diameter_region.html
    apa_coor = list(apa_geo.exterior.coords)
    
    pp_dis_lst = []
    for i in apa_coor:
        for j in apa_coor:
            pp_dis = Point(i).distance(Point(j))
            pp_dis_lst.append(pp_dis)

    max_diameter = max(pp_dis_lst)
    return max_diameter



def fractality(apa_geo):
    # [Fractality] ---> https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1538-4632.2000.tb00419.x
    # Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257. 
    Area = apartment_area(apa_geo)
    Perimeter = apartment_perimeter(apa_geo)

    fractality = 1 - ((math.log(Area) / (2 * math.log(Perimeter))))
    return fractality



def circularity(apa_geo):
    # [Circularity] ---> https://www.mvtec.com/doc/halcon/12/en/circularity.html
    apa_coor = list(apa_geo.exterior.coords)
    op_dis_lst = []
    for i in apa_coor:
        op_dis = Point((0, 0)).distance(Point(i))
        op_dis_lst.append(op_dis)
        
    Max_radius = max(op_dis_lst)
    
    Area = apartment_area(apa_geo)
    
    circularity = Area / ((math.pi) * (Max_radius**2))
    return circularity



def outer_radius(p_4_cv, xmin_abs, ymin_abs, scale):
    # [Outer_radius] ---> https://docs.opencv.org/4.x/d3/dc0/group__imgproc__shape.html#ga8ce13c24081bbc7151e9326f412190f1
    (xmin,ymin),radius = cv.minEnclosingCircle(p_4_cv)
    mini_Enclosing_Cir_x = scale_move_x(xmin, xmin_abs, scale)
    mini_Enclosing_Cir_y = scale_move_y(ymin, ymin_abs, scale)

    mini_Enclosing_Cir_radius = scale_perimeter(radius, scale)
    outer_radius = mini_Enclosing_Cir_radius
    return outer_radius



def inner_radius(apa_geo, apa_line):
    # [Inner_radius] ---> https://www.sthu.org/blog/14-skeleton-offset-topology/index.html
    dis_p = []
    for i in np.arange(0, apa_line.length, 0.1):
        s = substring(apa_line, i, i+0.1)
        dis_p.append(s.boundary.geoms[0])
    mp = MultiPoint(dis_p)

    regions = voronoi_diagram(mp)

    vo_p = []
    for i in range(len(regions.geoms)):
        vo = regions.geoms[i]
        b = list(vo.exterior.coords)
        for j in range(len(b)):
            p = Point(b[j])
            vo_p.append(p)
    vo_p = MultiPoint(vo_p)
    vo_p = unary_union(vo_p)
    vo_p_b = []
    for i in range(len(vo_p.geoms)):
        t_c_p = vo_p.geoms[i]
        pc = apa_geo.contains(t_c_p)
        vo_p_b.append(pc)
    vo_filtered_p = [i for indx,i in enumerate(vo_p.geoms) if vo_p_b[indx] == True]

    vo_d = []
    for i in range(len(vo_filtered_p)):
        c = Point(vo_filtered_p[i])
        d_min = c.distance(apa_line)
        vo_d.append(d_min)

    vo_r_max = max(vo_d)
    vo_r_max_index = vo_d.index(vo_r_max)
    vo_c_max = vo_filtered_p[vo_r_max_index]
    vo_c_max = list(vo_c_max.coords)

    max_Inner_Circle_x = vo_c_max[0][0]
    max_Inner_Circle_y = vo_c_max[0][1]
    max_Inner_Circle_r = vo_r_max
    inner_radius = max_Inner_Circle_r
    return inner_radius



def roundness_features(apa_line):
    # [Dist_mean, Dist_sigma, Roundness] ---> https://www.mvtec.com/doc/halcon/12/en/roundness.html
    rou_p = []
    for i in np.arange(0, apa_line.length, 0.5):
        s = substring(apa_line, i, i+0.5)
        rou_p.append(s.boundary.geoms[0])
    rp = MultiPoint(rou_p)
    
    ro_dis = []
    for i in range(len(rp.geoms)):
        rpp = rp.geoms[i]
        ro = Point(rpp).distance(Point((0, 0)))
        ro_dis.append(ro)
        
    dist_mean = mean(ro_dis) 
#     dist_sigma = stdev(ro_dis) 
         
    dev_lst = []
    for i in ro_dis:
        dev = (i - dist_mean)**2
        dev_lst.append(dev)
    dist_sigma = mean(dev_lst)
    dist_sigma = math.sqrt(dist_sigma)
    roundness = 1 - (dist_sigma/dist_mean)
    
    return dist_mean, dist_sigma, roundness


def compactness(apa_geo):
    # [Compactness] ---> https://fisherzachary.github.io/public/r-output.html
    Area = apartment_area(apa_geo)
    Perimeter = apartment_perimeter(apa_geo)
    
    compactness = (4*(math.pi)) * (Area / (Perimeter**2))
    return compactness



def equivalent_diameter(apa_geo):
    # https://docs.opencv.org/4.x/d1/d32/tutorial_py_contour_properties.html
    Area = apartment_area(apa_geo)
    
    equivalent_diameter = math.sqrt((4 * Area) / math.pi)
    return equivalent_diameter




def shape_membership_index(apa_line):
    # [Shape_membership_index] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257. 

    line_smi = LineString([(0, 0), (30, 0)])

    numl = 30
    line_rot_degree = 360 / numl
    line_rot = []
    for an in range(numl):
        ang = an*line_rot_degree
        lr = affinity.rotate(line_smi, ang, (0, 0))
        line_rot.append(lr)
    line_rot = MultiLineString(line_rot)
    smip = shapely.intersection(apa_line, line_rot)


    simo_dis = []
    for i in range(len(smip.geoms)):
        sim_p = smip.geoms[i]
        simo = Point(sim_p).distance(Point((0, 0)))
        simo_dis.append(simo)
    sim_r_max = max(simo_dis)

    simo_maxd = []
    for j in simo_dis:
        rmax_d = j / sim_r_max
        simo_maxd.append(rmax_d)

    simo_maxd_mean = mean(simo_maxd) 

    simo_rad = []
    for j in range(len(simo_dis)):
        s = simo_dis[j]    

        if j == (len(simo_dis) - 1):
            nu = 0
        else:
            nu = j+1
        e = simo_dis[nu]

        if s <= e:
            a = np.array([1,s])
            b = np.array([0,s])
            c = np.array([1,e])
        else:
            a = np.array([1,e])
            b = np.array([0,e])
            c = np.array([1,s])

        ba = a - b
        bc = c - b

        cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
        angle_rad = np.arccos(cosine_angle)

        simo_rad.append(angle_rad)

    simo_rad_min = min(simo_rad)
    simo_rad_max = max(simo_rad)
    simo_cos = math.cos(simo_rad_max - simo_rad_min)
    shape_membership_index = simo_cos * simo_maxd_mean
    return shape_membership_index


def convexity(p_4_cv, apa_geo, xmin_abs, ymin_abs, scale):
    # [Convexity] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257. 

    hull = cv.convexHull(p_4_cv)
    hull_x = []
    hull_y = []
    for h in range(len(hull)):
        h_x = hull[h][0][0]
        h_x = scale_move_x(h_x, xmin_abs, scale)
        hull_x.append(h_x)

        h_y = hull[h][0][1]
        h_y = scale_move_y(h_y, ymin_abs, scale)
        hull_y.append(h_y)

    hull_xy = []
    for i in range(len(hull_x)):
        hx = hull_x[i]
        hy = hull_y[i]
        hull_xy.append((hx, hy))
    hull_geo = Polygon(hull_xy)
    Hull_area = hull_geo.area
    
    Area = apartment_area(apa_geo)
    convexity = Area / Hull_area
    return convexity, hull_geo



def rectangle_features(p_4_cv, apa_geo, xmin_abs, ymin_abs, scale):
    # [Rectangularity] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257. 
    rect = cv.minAreaRect(p_4_cv)
    miniRect_rotation_angle = rect[2]
    box = cv.boxPoints(rect)
    box = np.intp(box)

    miniRect_x = []
    miniRect_y = []
    for b in range(len(box)):

        b_x = box[b][0]
        b_x = scale_move_x(b_x, xmin_abs, scale)
        miniRect_x.append(b_x)

        b_y = box[b][1]
        b_y = scale_move_y(b_y, ymin_abs, scale)
        miniRect_y.append(b_y)

    miniRec_xy = []
    for i in range(len(miniRect_x)):
        minirecx = miniRect_x[i]
        minirecy = miniRect_y[i]
        miniRec_xy.append((minirecx, minirecy))
    miniRect_geo = Polygon(miniRec_xy)
    miniRect_area = miniRect_geo.area
    
    Area = apartment_area(apa_geo)
    rectangularity = Area / miniRect_area
    rect_phi = (miniRect_rotation_angle * math.pi) / 180

    miniRect_line = miniRect_geo.boundary
    miniRect_segments = segments(miniRect_line)

    seg_len = []
    for s in miniRect_segments:
        seg_len.append(s.length)
    rect_width = max(seg_len)
    rect_height = min(seg_len)
    return rectangularity, rect_phi, rect_width, rect_height


def squareness(apa_geo):
    # [Squareness] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257. 

    Area = apartment_area(apa_geo)
    Perimeter = apartment_perimeter(apa_geo)
    
    squareness = (4*(math.sqrt(Area))) / Perimeter
    return squareness



def moments(apa_geo):
    # https://leancrew.com/all-this/2018/01/python-module-for-section-properties/
    pts = list(apa_geo.exterior.coords)

    if pts[0] != pts[-1]:
        pts = pts + pts[:1]
    x = [ c[0] for c in pts ]
    y = [ c[1] for c in pts ]
    sxx = syy = sxy = 0
    a = apartment_area(apa_geo)
    cx = apa_geo.centroid.x
    cy = apa_geo.centroid.y
    for i in range(len(pts) - 1):
        sxx += (y[i]**2 + y[i]*y[i+1] + y[i+1]**2)*(x[i]*y[i+1] - x[i+1]*y[i])
        syy += (x[i]**2 + x[i]*x[i+1] + x[i+1]**2)*(x[i]*y[i+1] - x[i+1]*y[i])
        sxy += (x[i]*y[i+1] + 2*x[i]*y[i] + 2*x[i+1]*y[i+1] + x[i+1]*y[i])*(x[i]*y[i+1] - x[i+1]*y[i])
    return sxx/12 - a*cy**2, syy/12 - a*cx**2, sxy/24 - a*cx*cy


def moment_index(apa_geo, Convexity, Compactness):
	# https://www.researchgate.net/publication/228557311_A_COMBINED_AUTOMATED_GENERALIZATION_MODEL_BASED_ON_THE_RELATIVE_FORCES_BETWEEN_SPATIAL_OBJECTS
	Ixx, Iyy, Ixy = moments(apa_geo)
	ratio = max(Ixx, Iyy) / min(Ixx, Iyy)
	# Convexity, Hull_geo = convexity(p_4_cv)
	# Compactness = compactness(apa_geo)
	moment_index = (Convexity * Compactness) / ratio
	return moment_index



def ndetour_index(apa_geo, Hull_geo):
    # [nDetour_index] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257. 

    Hull_line = Hull_geo.boundary
    Hull_length = Hull_line.length
    Area = apartment_area(apa_geo)
    ndetour_index = (2 * math.sqrt(Area * math.pi)) / Hull_length
    return ndetour_index


def ncohesion_index(apa_geo, grid_points):
    # [nCohesion_index] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257. 

    grid_p = grid_points.geoms
    grid_n = len(grid_p)
    gg_dis_lst = []
    for i in grid_p:
        for j in grid_p:
            gg_dis = Point(i).distance(Point(j))
            gg_dis_lst.append(gg_dis)
            
    Area = apartment_area(apa_geo)
    ncohesion_index = (0.9054 * math.sqrt(Area / math.pi)) / (sum(gg_dis_lst) / (grid_n * (grid_n-1)))
    return ncohesion_index



def nproximity_nspin_index(apa_geo, grid_points):
    grid_p = grid_points.geoms
    
    go_dis_lst = []
    for i in grid_p:
        go_dis = Point(i).distance(Point(0,0))
        go_dis_lst.append(go_dis)

    go_dis_mean = mean(go_dis_lst)
    Area = apartment_area(apa_geo)
    nproximity_index = ((2 / 3) * math.sqrt(Area / math.pi)) / go_dis_mean
    
    nspin_index = (0.5 * (Area / math.pi)) / (go_dis_mean**2)
    
    return nproximity_index, nspin_index



def nexchange_index(apa_geo):
    Area = apartment_area(apa_geo)

    eac_r = math.sqrt(Area / math.pi) 
    eac = Point(0,0).buffer(eac_r)
    eac_inter = apa_geo.intersection(eac)

    if eac_inter.geom_type == "Polygon":
        eac_area = eac_inter.area
    else:
        eacga_lst = []
        for i in range(len(eac_inter.geoms)):
            eacg = eac_inter.geoms[i]
            eacga = eacg.area
            eacga_lst.append(eacga)
        eac_area = sum(eacga_lst)
    nexchange_index = eac_area / Area
    return nexchange_index



def nperimeter_index(apa_geo):
    Area = apartment_area(apa_geo)
    Perimeter = apartment_perimeter(apa_geo)

    nperimeter_index = (2 * math.sqrt(math.pi * Area)) / Perimeter
    return nperimeter_index



def ndepth_index(apa_geo, apa_line, grid_points):
    moved_apa_line = apa_line
    grid_p = grid_points.geoms
    
    nea_len_lst = []
    for i in grid_p:
        nea_line = LineString(nearest_points(moved_apa_line, i))
        nea_len = nea_line.length
        nea_len_lst.append(nea_len)
    nea_len_mean = mean(nea_len_lst)

    Area = apartment_area(apa_geo)
    ndepth_index = (3 * nea_len_mean) / math.sqrt(Area / math.pi)
    return ndepth_index



def ngirth_index(apa_geo, Inner_radius):
    Area = apartment_area(apa_geo)

    ngirth_index = Inner_radius / math.sqrt(Area / math.pi)
    return ngirth_index



def nrange_index(apa_geo, Outer_radius):
    Area = apartment_area(apa_geo)

    nrange_index =  math.sqrt(Area / math.pi) / Outer_radius
    return nrange_index



def ntraversal_index(apa_geo, apa_line):
    rou_p = []
    for i in np.arange(0, apa_line.length, 0.5):
        s = substring(apa_line, i, i+0.5)
        rou_p.append(s.boundary.geoms[0])
    rp = MultiPoint(rou_p)
    
    rp_n = len(rp.geoms)
    bb_dis_lst = []
    for i in rp.geoms:
        for j in rp.geoms:
            bb_dis = Point(i).distance(Point(j))
            bb_dis_lst.append(bb_dis)
    bb_dis_mean = sum(bb_dis_lst) / (rp_n * (rp_n-1))
    
    Area = apartment_area(apa_geo)
    
    ntraversal_index = (4 * (math.sqrt(Area / math.pi) / math.pi)) / bb_dis_mean
    return ntraversal_index