Spaces:
Sleeping
Sleeping
File size: 19,663 Bytes
01df1d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
import pandas as pd
import numpy as np
import math
from statistics import mean, stdev
from collections import defaultdict
import shapely
import shapely.wkt
from shapely.geometry import Point, MultiPoint, LineString, MultiLineString, Polygon, LinearRing
from shapely.ops import voronoi_diagram, substring, unary_union, nearest_points
from shapely import affinity
from shapely.prepared import prep
import cv2 as cv
def segments(polyline):
return list(map(LineString, zip(polyline.coords[:-1], polyline.coords[1:])))
def scale_move_x(x, xmin_abs, scale):
xn = (x / scale) - 1 - xmin_abs
return xn
def scale_move_y(y, ymin_abs, scale):
yn = (y / scale) - 1 - ymin_abs
return yn
def scale_area(a, scale):
a = a / (scale**2)
return a
def scale_perimeter(p, scale):
p = p / scale
return p
def wall_segment_cosine(direction, apa_line_seg):
seg_s = list(apa_line_seg.coords)[0]
seg_e = list(apa_line_seg.coords)[1]
normal_x = seg_e[0] - seg_s[0]
normal_y = seg_e[1] - seg_s[1]
normal_s = (-normal_y, normal_x)
normal_e = (normal_y, -normal_x)
o = np.array([-normal_y, normal_x])
w = np.array([normal_y, -normal_x])
if direction == "south":
d = np.array([-normal_y, normal_x-1])
if direction == "east":
d = np.array([-normal_y+1, normal_x])
if direction == "north":
d = np.array([-normal_y, normal_x+1])
if direction == "west":
d = np.array([-normal_y-1, normal_x])
od = d - o
ow = w - o
cosine = np.dot(od, ow) / (np.linalg.norm(od) * np.linalg.norm(ow))
return cosine
# Dir_S_longestedge, Dir_N_longestedge, Dir_W_longestedge, Dir_E_longestedge, Dir_S_max, Dir_N_max, Dir_W_max, Dir_E_max, Facade_length, Facade_ratio
def wall_direction_ratio(apa_line, apa_wall):
apa_wall_O = [i for indx,i in enumerate(segments(apa_line)) if apa_wall[indx] == "O"]
apa_wall_O = MultiLineString(apa_wall_O)
wall_O_length = []
wall_O_south = []
wall_O_east = []
wall_O_north = []
wall_O_west = []
apa_wall_O_num = len(apa_wall_O.geoms)
if apa_wall_O_num > 0:
for i in range(apa_wall_O_num):
wall_seg = apa_wall_O.geoms[i]
wall_length = wall_seg.length
south_cos = wall_segment_cosine("south", wall_seg)
east_cos = wall_segment_cosine("east", wall_seg)
north_cos = wall_segment_cosine("north", wall_seg)
west_cos = wall_segment_cosine("west", wall_seg)
if south_cos < 0:
south_cos = 0
if east_cos < 0:
east_cos = 0
if north_cos < 0:
north_cos = 0
if west_cos < 0:
west_cos = 0
wall_O_length.append(wall_length)
wall_O_south.append(south_cos)
wall_O_east.append(east_cos)
wall_O_north.append(north_cos)
wall_O_west.append(west_cos)
max_length_index = np.array(wall_O_length).argmax()
Dir_S_longestedge = wall_O_south[max_length_index]
Dir_N_longestedge = wall_O_north[max_length_index]
Dir_W_longestedge = wall_O_west[max_length_index]
Dir_E_longestedge = wall_O_east[max_length_index]
Dir_S_max = max(wall_O_south)
Dir_N_max = max(wall_O_north)
Dir_W_max = max(wall_O_west)
Dir_E_max = max(wall_O_east)
Facade_length = apa_wall_O.length
apa_line_length = apa_line.length
Facade_ratio = Facade_length / apa_line_length
else:
Dir_S_longestedge = 0
Dir_N_longestedge = 0
Dir_W_longestedge = 0
Dir_E_longestedge = 0
Dir_S_max = 0
Dir_N_max = 0
Dir_W_max = 0
Dir_E_max = 0
Facade_length = 0
Facade_ratio = 0
return Dir_S_longestedge, Dir_N_longestedge, Dir_W_longestedge, Dir_E_longestedge, Dir_S_max, Dir_N_max, Dir_W_max, Dir_E_max, Facade_length, Facade_ratio
# apa_geo
def apartment_perimeter(apa_geo):
perimeter =apa_geo.length
return perimeter
def apartment_area(apa_geo):
area =apa_geo.area
return area
def boundingbox(apa_geo):
boundingbox = apa_geo.bounds
return boundingbox
# BBox_width_x, BBox_height_y, Aspect_ratio, Extent, ULC_x, ULC_y, LRC_x, LRC_y
def boundingbox_features(apa_geo):
# [Aspect_ratio, Extent] ---> https://docs.opencv.org/3.4/d1/d32/tutorial_py_contour_properties.html
bbox_xy = boundingbox(apa_geo)
bbox_geo = Polygon([(bbox_xy[0], bbox_xy[1]), (bbox_xy[2], bbox_xy[1]), (bbox_xy[2], bbox_xy[3]), (bbox_xy[0], bbox_xy[3])])
BBox_width_x = bbox_xy[2] - bbox_xy[0]
BBox_height_y = bbox_xy[3] - bbox_xy[1]
Aspect_ratio = BBox_width_x / BBox_height_y
bbox_geo_area = bbox_geo.area
Area = apartment_area(apa_geo)
Extent = Area / bbox_geo_area
ULC_x = bbox_xy[0]
ULC_y = bbox_xy[3]
LRC_x = bbox_xy[2]
LRC_y = bbox_xy[1]
return BBox_width_x, BBox_height_y, Aspect_ratio, Extent, ULC_x, ULC_y, LRC_x, LRC_y
# Max_diameter
def max_diameter(apa_geo):
# [Max_diameter] ---> https://www.mvtec.com/doc/halcon/12/en/diameter_region.html
apa_coor = list(apa_geo.exterior.coords)
pp_dis_lst = []
for i in apa_coor:
for j in apa_coor:
pp_dis = Point(i).distance(Point(j))
pp_dis_lst.append(pp_dis)
max_diameter = max(pp_dis_lst)
return max_diameter
def fractality(apa_geo):
# [Fractality] ---> https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1538-4632.2000.tb00419.x
# Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
Area = apartment_area(apa_geo)
Perimeter = apartment_perimeter(apa_geo)
fractality = 1 - ((math.log(Area) / (2 * math.log(Perimeter))))
return fractality
def circularity(apa_geo):
# [Circularity] ---> https://www.mvtec.com/doc/halcon/12/en/circularity.html
apa_coor = list(apa_geo.exterior.coords)
op_dis_lst = []
for i in apa_coor:
op_dis = Point((0, 0)).distance(Point(i))
op_dis_lst.append(op_dis)
Max_radius = max(op_dis_lst)
Area = apartment_area(apa_geo)
circularity = Area / ((math.pi) * (Max_radius**2))
return circularity
def outer_radius(p_4_cv, xmin_abs, ymin_abs, scale):
# [Outer_radius] ---> https://docs.opencv.org/4.x/d3/dc0/group__imgproc__shape.html#ga8ce13c24081bbc7151e9326f412190f1
(xmin,ymin),radius = cv.minEnclosingCircle(p_4_cv)
mini_Enclosing_Cir_x = scale_move_x(xmin, xmin_abs, scale)
mini_Enclosing_Cir_y = scale_move_y(ymin, ymin_abs, scale)
mini_Enclosing_Cir_radius = scale_perimeter(radius, scale)
outer_radius = mini_Enclosing_Cir_radius
return outer_radius
def inner_radius(apa_geo, apa_line):
# [Inner_radius] ---> https://www.sthu.org/blog/14-skeleton-offset-topology/index.html
dis_p = []
for i in np.arange(0, apa_line.length, 0.1):
s = substring(apa_line, i, i+0.1)
dis_p.append(s.boundary.geoms[0])
mp = MultiPoint(dis_p)
regions = voronoi_diagram(mp)
vo_p = []
for i in range(len(regions.geoms)):
vo = regions.geoms[i]
b = list(vo.exterior.coords)
for j in range(len(b)):
p = Point(b[j])
vo_p.append(p)
vo_p = MultiPoint(vo_p)
vo_p = unary_union(vo_p)
vo_p_b = []
for i in range(len(vo_p.geoms)):
t_c_p = vo_p.geoms[i]
pc = apa_geo.contains(t_c_p)
vo_p_b.append(pc)
vo_filtered_p = [i for indx,i in enumerate(vo_p.geoms) if vo_p_b[indx] == True]
vo_d = []
for i in range(len(vo_filtered_p)):
c = Point(vo_filtered_p[i])
d_min = c.distance(apa_line)
vo_d.append(d_min)
vo_r_max = max(vo_d)
vo_r_max_index = vo_d.index(vo_r_max)
vo_c_max = vo_filtered_p[vo_r_max_index]
vo_c_max = list(vo_c_max.coords)
max_Inner_Circle_x = vo_c_max[0][0]
max_Inner_Circle_y = vo_c_max[0][1]
max_Inner_Circle_r = vo_r_max
inner_radius = max_Inner_Circle_r
return inner_radius
def roundness_features(apa_line):
# [Dist_mean, Dist_sigma, Roundness] ---> https://www.mvtec.com/doc/halcon/12/en/roundness.html
rou_p = []
for i in np.arange(0, apa_line.length, 0.5):
s = substring(apa_line, i, i+0.5)
rou_p.append(s.boundary.geoms[0])
rp = MultiPoint(rou_p)
ro_dis = []
for i in range(len(rp.geoms)):
rpp = rp.geoms[i]
ro = Point(rpp).distance(Point((0, 0)))
ro_dis.append(ro)
dist_mean = mean(ro_dis)
# dist_sigma = stdev(ro_dis)
dev_lst = []
for i in ro_dis:
dev = (i - dist_mean)**2
dev_lst.append(dev)
dist_sigma = mean(dev_lst)
dist_sigma = math.sqrt(dist_sigma)
roundness = 1 - (dist_sigma/dist_mean)
return dist_mean, dist_sigma, roundness
def compactness(apa_geo):
# [Compactness] ---> https://fisherzachary.github.io/public/r-output.html
Area = apartment_area(apa_geo)
Perimeter = apartment_perimeter(apa_geo)
compactness = (4*(math.pi)) * (Area / (Perimeter**2))
return compactness
def equivalent_diameter(apa_geo):
# https://docs.opencv.org/4.x/d1/d32/tutorial_py_contour_properties.html
Area = apartment_area(apa_geo)
equivalent_diameter = math.sqrt((4 * Area) / math.pi)
return equivalent_diameter
def shape_membership_index(apa_line):
# [Shape_membership_index] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
line_smi = LineString([(0, 0), (30, 0)])
numl = 30
line_rot_degree = 360 / numl
line_rot = []
for an in range(numl):
ang = an*line_rot_degree
lr = affinity.rotate(line_smi, ang, (0, 0))
line_rot.append(lr)
line_rot = MultiLineString(line_rot)
smip = shapely.intersection(apa_line, line_rot)
simo_dis = []
for i in range(len(smip.geoms)):
sim_p = smip.geoms[i]
simo = Point(sim_p).distance(Point((0, 0)))
simo_dis.append(simo)
sim_r_max = max(simo_dis)
simo_maxd = []
for j in simo_dis:
rmax_d = j / sim_r_max
simo_maxd.append(rmax_d)
simo_maxd_mean = mean(simo_maxd)
simo_rad = []
for j in range(len(simo_dis)):
s = simo_dis[j]
if j == (len(simo_dis) - 1):
nu = 0
else:
nu = j+1
e = simo_dis[nu]
if s <= e:
a = np.array([1,s])
b = np.array([0,s])
c = np.array([1,e])
else:
a = np.array([1,e])
b = np.array([0,e])
c = np.array([1,s])
ba = a - b
bc = c - b
cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
angle_rad = np.arccos(cosine_angle)
simo_rad.append(angle_rad)
simo_rad_min = min(simo_rad)
simo_rad_max = max(simo_rad)
simo_cos = math.cos(simo_rad_max - simo_rad_min)
shape_membership_index = simo_cos * simo_maxd_mean
return shape_membership_index
def convexity(p_4_cv, apa_geo, xmin_abs, ymin_abs, scale):
# [Convexity] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
hull = cv.convexHull(p_4_cv)
hull_x = []
hull_y = []
for h in range(len(hull)):
h_x = hull[h][0][0]
h_x = scale_move_x(h_x, xmin_abs, scale)
hull_x.append(h_x)
h_y = hull[h][0][1]
h_y = scale_move_y(h_y, ymin_abs, scale)
hull_y.append(h_y)
hull_xy = []
for i in range(len(hull_x)):
hx = hull_x[i]
hy = hull_y[i]
hull_xy.append((hx, hy))
hull_geo = Polygon(hull_xy)
Hull_area = hull_geo.area
Area = apartment_area(apa_geo)
convexity = Area / Hull_area
return convexity, hull_geo
def rectangle_features(p_4_cv, apa_geo, xmin_abs, ymin_abs, scale):
# [Rectangularity] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
rect = cv.minAreaRect(p_4_cv)
miniRect_rotation_angle = rect[2]
box = cv.boxPoints(rect)
box = np.intp(box)
miniRect_x = []
miniRect_y = []
for b in range(len(box)):
b_x = box[b][0]
b_x = scale_move_x(b_x, xmin_abs, scale)
miniRect_x.append(b_x)
b_y = box[b][1]
b_y = scale_move_y(b_y, ymin_abs, scale)
miniRect_y.append(b_y)
miniRec_xy = []
for i in range(len(miniRect_x)):
minirecx = miniRect_x[i]
minirecy = miniRect_y[i]
miniRec_xy.append((minirecx, minirecy))
miniRect_geo = Polygon(miniRec_xy)
miniRect_area = miniRect_geo.area
Area = apartment_area(apa_geo)
rectangularity = Area / miniRect_area
rect_phi = (miniRect_rotation_angle * math.pi) / 180
miniRect_line = miniRect_geo.boundary
miniRect_segments = segments(miniRect_line)
seg_len = []
for s in miniRect_segments:
seg_len.append(s.length)
rect_width = max(seg_len)
rect_height = min(seg_len)
return rectangularity, rect_phi, rect_width, rect_height
def squareness(apa_geo):
# [Squareness] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
Area = apartment_area(apa_geo)
Perimeter = apartment_perimeter(apa_geo)
squareness = (4*(math.sqrt(Area))) / Perimeter
return squareness
def moments(apa_geo):
# https://leancrew.com/all-this/2018/01/python-module-for-section-properties/
pts = list(apa_geo.exterior.coords)
if pts[0] != pts[-1]:
pts = pts + pts[:1]
x = [ c[0] for c in pts ]
y = [ c[1] for c in pts ]
sxx = syy = sxy = 0
a = apartment_area(apa_geo)
cx = apa_geo.centroid.x
cy = apa_geo.centroid.y
for i in range(len(pts) - 1):
sxx += (y[i]**2 + y[i]*y[i+1] + y[i+1]**2)*(x[i]*y[i+1] - x[i+1]*y[i])
syy += (x[i]**2 + x[i]*x[i+1] + x[i+1]**2)*(x[i]*y[i+1] - x[i+1]*y[i])
sxy += (x[i]*y[i+1] + 2*x[i]*y[i] + 2*x[i+1]*y[i+1] + x[i+1]*y[i])*(x[i]*y[i+1] - x[i+1]*y[i])
return sxx/12 - a*cy**2, syy/12 - a*cx**2, sxy/24 - a*cx*cy
def moment_index(apa_geo, Convexity, Compactness):
# https://www.researchgate.net/publication/228557311_A_COMBINED_AUTOMATED_GENERALIZATION_MODEL_BASED_ON_THE_RELATIVE_FORCES_BETWEEN_SPATIAL_OBJECTS
Ixx, Iyy, Ixy = moments(apa_geo)
ratio = max(Ixx, Iyy) / min(Ixx, Iyy)
# Convexity, Hull_geo = convexity(p_4_cv)
# Compactness = compactness(apa_geo)
moment_index = (Convexity * Compactness) / ratio
return moment_index
def ndetour_index(apa_geo, Hull_geo):
# [nDetour_index] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
Hull_line = Hull_geo.boundary
Hull_length = Hull_line.length
Area = apartment_area(apa_geo)
ndetour_index = (2 * math.sqrt(Area * math.pi)) / Hull_length
return ndetour_index
def ncohesion_index(apa_geo, grid_points):
# [nCohesion_index] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
grid_p = grid_points.geoms
grid_n = len(grid_p)
gg_dis_lst = []
for i in grid_p:
for j in grid_p:
gg_dis = Point(i).distance(Point(j))
gg_dis_lst.append(gg_dis)
Area = apartment_area(apa_geo)
ncohesion_index = (0.9054 * math.sqrt(Area / math.pi)) / (sum(gg_dis_lst) / (grid_n * (grid_n-1)))
return ncohesion_index
def nproximity_nspin_index(apa_geo, grid_points):
grid_p = grid_points.geoms
go_dis_lst = []
for i in grid_p:
go_dis = Point(i).distance(Point(0,0))
go_dis_lst.append(go_dis)
go_dis_mean = mean(go_dis_lst)
Area = apartment_area(apa_geo)
nproximity_index = ((2 / 3) * math.sqrt(Area / math.pi)) / go_dis_mean
nspin_index = (0.5 * (Area / math.pi)) / (go_dis_mean**2)
return nproximity_index, nspin_index
def nexchange_index(apa_geo):
Area = apartment_area(apa_geo)
eac_r = math.sqrt(Area / math.pi)
eac = Point(0,0).buffer(eac_r)
eac_inter = apa_geo.intersection(eac)
if eac_inter.geom_type == "Polygon":
eac_area = eac_inter.area
else:
eacga_lst = []
for i in range(len(eac_inter.geoms)):
eacg = eac_inter.geoms[i]
eacga = eacg.area
eacga_lst.append(eacga)
eac_area = sum(eacga_lst)
nexchange_index = eac_area / Area
return nexchange_index
def nperimeter_index(apa_geo):
Area = apartment_area(apa_geo)
Perimeter = apartment_perimeter(apa_geo)
nperimeter_index = (2 * math.sqrt(math.pi * Area)) / Perimeter
return nperimeter_index
def ndepth_index(apa_geo, apa_line, grid_points):
moved_apa_line = apa_line
grid_p = grid_points.geoms
nea_len_lst = []
for i in grid_p:
nea_line = LineString(nearest_points(moved_apa_line, i))
nea_len = nea_line.length
nea_len_lst.append(nea_len)
nea_len_mean = mean(nea_len_lst)
Area = apartment_area(apa_geo)
ndepth_index = (3 * nea_len_mean) / math.sqrt(Area / math.pi)
return ndepth_index
def ngirth_index(apa_geo, Inner_radius):
Area = apartment_area(apa_geo)
ngirth_index = Inner_radius / math.sqrt(Area / math.pi)
return ngirth_index
def nrange_index(apa_geo, Outer_radius):
Area = apartment_area(apa_geo)
nrange_index = math.sqrt(Area / math.pi) / Outer_radius
return nrange_index
def ntraversal_index(apa_geo, apa_line):
rou_p = []
for i in np.arange(0, apa_line.length, 0.5):
s = substring(apa_line, i, i+0.5)
rou_p.append(s.boundary.geoms[0])
rp = MultiPoint(rou_p)
rp_n = len(rp.geoms)
bb_dis_lst = []
for i in rp.geoms:
for j in rp.geoms:
bb_dis = Point(i).distance(Point(j))
bb_dis_lst.append(bb_dis)
bb_dis_mean = sum(bb_dis_lst) / (rp_n * (rp_n-1))
Area = apartment_area(apa_geo)
ntraversal_index = (4 * (math.sqrt(Area / math.pi) / math.pi)) / bb_dis_mean
return ntraversal_index
|