File size: 3,068 Bytes
01df1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import math

import shapely
from shapely.geometry import Polygon, LineString

import torch
from torch_geometric.utils import to_undirected, remove_self_loops
from torch_geometric.data import Data


def node_graph(apa_coor, apa_geo):
    num_op = len(apa_coor)
    apa_coor = apa_coor[0:-1]
    # apa_coor.pop(num_op-1)

    node_lst = []
    num_p = len(apa_coor)
    for j in range(num_p):
        p = apa_coor[j]
        if j == 0:
            sindex = -1
            oindex = j
            eindex = 1
        elif j == (len(apa_coor)-1):
            sindex = j-1
            oindex = j
            eindex = 0
        else:
            sindex = j-1
            oindex = j
            eindex = j+1

        sp = apa_coor[sindex]
        s = np.array(sp)

        op = apa_coor[oindex]
        o = np.array(op)
        ox = op[0]
        oy = op[1]

        ep = apa_coor[eindex]
        e = np.array(ep)

        Area = apa_geo.area
        local_polygon = Polygon((sp, op, ep))
        larea = (local_polygon.area) / Area

        se = LineString((sp, ep))
        llength = se.length / math.sqrt(Area)

        osv = s - o
        oev = e - o

        langle = angle_between(osv, oev)
        if langle < 0:
            langle = langle + (2*math.pi)


        oop = (0, 0)
        oo = np.array(oop)
        regional_polygon = Polygon((sp, oop, ep))
        regional_polygon_area = regional_polygon.area
        rarea = regional_polygon_area / Area

        regional_polygon_perimeter = regional_polygon.length / 2
        rperimeter = regional_polygon_perimeter / math.sqrt(Area)

        rradius = (regional_polygon_area / regional_polygon_perimeter) / math.sqrt(Area)

        oosv = s - oo
        ooev = e - oo
        rangle = angle_between(oosv, ooev)
        if rangle < 0:
            rangle = rangle + (2*math.pi)

        #ox, oy,
        nl = [larea, llength, langle, rarea, rperimeter, rradius, rangle]

        node_lst.append(nl)


    ms_lst = []
    me_lst = []
    for k in range(num_p):
        if k == (num_p - 1):
            ms = k
            me = 0
        else:
            ms = k
            me = k+1
        ms_lst.append(ms)
        me_lst.append(me)
    mse = [ms_lst, me_lst]

    datasets = []
    for i in range(2):
        node_f = torch.FloatTensor(node_lst)
        x = node_f

        edge_index = torch.tensor(mse, dtype=torch.long)
        edge_index, _ = remove_self_loops(edge_index)
        edge_index = to_undirected(edge_index=edge_index)

        data = Data(x=x, edge_index=edge_index)
        datasets.append(data)
    return datasets




def angle_between(v1, v2):
    """ Returns the angle in radians between vectors 'v1' and 'v2'
        The sign of the angle is dependent on the order of v1 and v2
        so acos(norm(dot(v1, v2))) does not work and atan2 has to be used, see:
        https://stackoverflow.com/questions/21483999/using-atan2-to-find-angle-between-two-vectors
    """
    arg1 = np.cross(v1, v2)
    arg2 = np.dot(v1, v2)
    angle = np.arctan2(arg1, arg2)
    return angle