Spaces:
Runtime error
Runtime error
File size: 5,089 Bytes
8f873ac 3494400 8f873ac 58672d9 8f873ac 3494400 8f873ac 3494400 8f873ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
#!/usr/bin/env python
import gradio as gr
import PIL.Image
import torch
import torchvision.transforms.functional as TF
from model import Model
from utils import (
DEFAULT_STYLE_NAME,
MAX_SEED,
STYLE_NAMES,
apply_style,
randomize_seed_fn,
)
SKETCH_ADAPTER_NAME = "TencentARC/t2i-adapter-sketch-sdxl-1.0"
def create_demo(model: Model) -> gr.Blocks:
def run(
image: PIL.Image.Image,
prompt: str,
negative_prompt: str,
style_name: str = DEFAULT_STYLE_NAME,
num_steps: int = 25,
guidance_scale: float = 5,
adapter_conditioning_scale: float = 0.8,
cond_tau: float = 0.8,
seed: int = 0,
progress=gr.Progress(track_tqdm=True),
) -> PIL.Image.Image:
image = image.convert("RGB")
image = TF.to_tensor(image) > 0.5
image = TF.to_pil_image(image.to(torch.float32))
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
return model.run(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
adapter_name=SKETCH_ADAPTER_NAME,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
adapter_conditioning_scale=adapter_conditioning_scale,
cond_tau=cond_tau,
seed=seed,
apply_preprocess=False,
)[1]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Group():
image = gr.Image(
source="canvas",
tool="sketch",
type="pil",
image_mode="L",
invert_colors=True,
shape=(1024, 1024),
brush_radius=4,
height=600,
)
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
style = gr.Dropdown(choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Style")
negative_prompt = gr.Textbox(label="Negative prompt")
num_steps = gr.Slider(
label="Number of steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
adapter_conditioning_scale = gr.Slider(
label="Adapter Conditioning Scale",
minimum=0.5,
maximum=1,
step=0.1,
value=0.8,
)
cond_tau = gr.Slider(
label="Fraction of timesteps for which adapter should be applied",
minimum=0.5,
maximum=1,
step=0.1,
value=0.8,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
result = gr.Image(label="Result", height=600)
inputs = [
image,
prompt,
negative_prompt,
style,
num_steps,
guidance_scale,
adapter_conditioning_scale,
cond_tau,
seed,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name=False,
)
negative_prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name=False,
)
return demo
if __name__ == "__main__":
model = Model(SKETCH_ADAPTER_NAME)
demo = create_demo(model)
demo.queue(max_size=20).launch()
|